The Monthly Webinar Series focuses on research being conducted at the partner labs of the Nuclear Science and Security Consortium.

Our webinars serve as an opportunity for our students to connect with lab scientists and learn about projects looking for student researchers.


If you or someone you know would be interested in presenting a webinar contact

Webinars for Spring 2018

Ambassador Linton F. Brooks

March 19, 2018

More info pending.

Dealing with Secrecy, Trust and Access in Nuclear Weapons Verification

Sébastien Philippe

February 14, 2018 at 1:00 pm – 2:00 pm

Join us in person at 2150 Shattuck Ave Suite 230. Or tune in LIVE online:

Future nuclear arms-control agreements could place numerical limits on the total number of warheads in the arsenals of the weapon states. Verifying these agreements would face at least two fundamentally new challenges. First, inspectors would have to confirm that the number of declared items does not exceed the agreed limit; and, second, inspectors would also have to confirm the authenticity of nuclear warheads prior to dismantlement. Both tasks may involve procedures that put at risk classified or otherwise sensitive information and require access to sensitive facilities. A viable verification regime needs to protect this information and possibly limit access to these facilities while providing inspectors the ability to acquire data they can trust. This presentation reviews the emerging challenges for nuclear verification and proposes technical approaches to address them building on new applications of cryptography and information security.

Sébastien Philippe is a doctoral candidate in applied physics at Princeton University’s Department of Mechanical and Aerospace Engineering. His research focuses on innovative verification approaches and technologies to support future international treaties, with a focus on nuclear non-proliferation, arms control and disarmament. As part of his Princeton dissertation, he has designed and carried out successfully the first experimental demonstration of a physical application of the cryptographic concept of zero-knowledge proofs.

Sébastien is a member of Princeton’s Nuclear Futures Laboratory and affiliated with the Program on Science and Global Security at the Woodrow Wilson School of Public and International Affairs. He is also an editorial assistant of the peer-reviewed journal Science & Global Security. Before joining Princeton, Sébastien was a graduate research fellow at the French war college and a nuclear safety engineer for strategic nuclear forces within the French defense procurement agency. He holds a MSc from France’s National Institute of Applied Sciences in Lyon (2010) and a MA from Princeton University (2014).



Is Nuclear Arms Control Dead?

Professor Michael Nacht, UCB

November 13th, 2017

The tense international environment with poor U.S.- Russia relations, and great tensions in US-North Korea and US-Iran relations, has called into question whether negotiated nuclear arms control agreements have any future. If not, what does this portend for nuclear weapons proliferation and even nuclear weapon use.

Michael Nacht holds the Thomas and Alison Schneider Chair in Public Policy.  From 1998-2008 he was Aaron Wildavsky Dean of the Goldman School.  He is a specialist in U.S. national security policy; science, technology and public policy; and management strategies for complex organizations.
Nacht served as Assistant Secretary of Defense for Global Strategic Affairs (2009-2010), after unanimous U.S. Senate confirmation, for which he received the Distinguished Public Service Award, the Department’s highest civilian honor.  Previously, he was Assistant Director for Strategic and Eurasian Affairs of the U.S. Arms Control and Disarmament Agency (1994-97), during which time he participated in five Presidential summits, four with Russian President Yeltsin and one with Chinese President Jiang Zemin.

He is currently chair of the Policy Focus Area for the Nuclear Science and Security Consortium led by the U.C. Berkeley Department of Nuclear Engineering. He is also co-investigator of a new Department of Defense Minerva Research Project on “Deterring Complex Threats” with colleagues from UC San Diego.

He received a B.S. in Aeronautics and Astronautics and an M.S. in Operations Research from New York University and a Ph.D. in Political Science from Columbia University.


Nondestructive Assay for International Safeguards

Dr. Alexis Trahan, LANL

October 23rd, 2017

From the Atoms for Peace speech in 1953 to the JCPOA (Iran Deal) in 2015, nuclear nonproliferation has been crucial to maintaining peace throughout the world. International Safeguards is the system of inspection and verification that the International Atomic Energy Agency (IAEA) uses to maintain that peace and prevent weapon proliferation. We will discuss safeguards and how it fits into the IAEA’s mission, with an emphasis on special nuclear material nondestructive assay (NDA) methods. The science of NDA will be discussed followed by an overview of selected technologies employed by the IAEA. Finally, we will go over NDA of spent nuclear fuel, discussing currently employed techniques and research in the area taking place at LANL.

Alexis Trahan is a nuclear engineer with the Los Alamos National Laboratory (LANL) Safeguards Science and Technology group, NEN-1. She received her B.S. in nuclear engineering from UC Berkeley in 2011 and her M.S. from the University of Michigan in 2012. In 2014, Dr. Trahan was awarded the University of Michigan Towner Prize for Outstanding Ph.D. Research for her thesis on development of a spent fuel nondestructive assay instrument for IAEA nuclear safeguards, and she completed her Ph.D. in 2016. Dr. Trahan is currently developing and testing neutron timing-based technologies for used power reactor and research reactor fuel characterization.

Potential of Cognitive Computing for National Security Missions

Dr. David R. Farley, SNL

September 25th, 2017

There has been substantial progress in machine learning, cognitive computing and other data analytics flavors. Decision makers, nuclear power plant operators, intelligence analysts and other high-consequence industries seek to understand the potential impact of these new computer-enhanced analytic tools.  IBM’s Watson cognitive computing platform enables users to ask natural language questions and evaluate hypotheses along with supporting evidence in the form of specific passages from a vast corpus of changing knowledge.  Watson currently supports evidence discovery for agencies in the Federal Government and has made significant strides in various industries, such as indications analysis for diagnosing diseases in the healthcare industry. But do platforms like Watson deliver for national security missions, and how do we assess this? In this presentation, an overview of  the national lab work on using Watson is detailed, as well as potential paths forward.

Dr. David R. Farley is a Principal Member of the Technical Staff in the Remote Sensing department at Sandia National Laboratories in Livermore, California. He received his Ph.D. in Engineering Physics from UCSD in 1996 with an emphasis in spectroscopy and quantum mechanics. David did his postdoc at Lawrence Livermore National Laboratory (LLNL) in the weapons group, utilizing the NOVA laser system to study fluid interface mixing. Thereafter, he spent a decade working in the fission industry initiating and managing energy projects around the world. David returned to more basic research in 2009 at the Princeton Plasma Physics Laboratory (PPPL) working on the Princeton Field-Reversed Confinement (FRC) fusion device, and then returned to LLNL to be a shot physicist at the National Ignition Facility (NIF) during the National Ignition Campaign (NIC). While at LLNL, David became involved in nonproliferation and safeguards work at Z-Division, leveraging his years on the ground for the nuclear industry, and since 2014 continues his nonproliferation and safeguards work at Sandia.

Past Webinars

Improving beta-decay studies for fundamental science and applications

Dr. Nicholas Scielzo

April 13th, 2017

scielzo_nRecent advances in radioactive-ion beams and ion-trapping techniques are opening up new opportunities for improved studies of the neutrinos and neutrons emitted in nuclear beta decay. A novel ion-trap system has been developed to address fundamental questions ranging from electroweak theory to the origin of the elements and to provide nuclear data for nuclear-energy and stockpile-stewardship applications. When a radioactive ion decays in the trap, the recoil-daughter nucleus and emitted particles emerge from the trap volume with negligible scattering and propagate unobstructed through vacuum. This allows the momentum and energy of particles that would otherwise be difficult (or even impossible) to detect to be reconstructed from the momentum imparted to the recoiling nucleus. Beta-delayed neutron spectroscopy can be performed by circumventing the difficulties associated with direct neutron detection and instead reconstructing the neutron emission probabilities and energy spectra from the time of flight of the recoiling nuclei. In addition, a determination of the direction and energy of each emitted neutrino in the decays of 8Li and 8B has been performed to search for new particles and interactions. Recent results from decay studies using the Beta-decay Paul Trap (BPT) at Argonne National Laboratory will be presented and future prospects for these approaches will be discussed.

Dr. Nicholas Scielzo is currently a Deputy Group Leader for the Nuclear Particle Physics Group within the Nuclear and Chemical Sciences Division at LLNL. He earned a BA in chemistry and physics from Harvard University in 1997 and a PhD in physics from the University of California at Berkeley in 2003. He arrived at LLNL in 2006 as a Lawrence Fellow after spending 3 years at Argonne National Laboratory developing novel techniques to test the Standard Model of particle physics using short-lived radioactive nuclei. At LLNL, he has established a multi-faceted beta-decay spectroscopy program that uses ion traps, radioactive beams, and an assortment of specialized radiation detectors to perform neutrino and neutron spectroscopy to test the electroweak interaction, improve our understanding of heavy-element nucleosynthesis, and provide high-quality nuclear data for stockpile-stewardship and reactor-modeling applications. He has also developed new techniques to search for neutrinoless double-beta decay and to determine reaction cross sections on radioactive isotopes. In the last several years he has served as the primary advisor for 4 graduate students who received their PhD from the University of California at Berkeley.


Spatially Resolved Uranium Speciation in Nuclear Materials by Scanning Transmission X-ray Microscopy

Dr. David Shuh

February 28th, 2017

Picture1The production and manipulation of nuclear material can leave distinct physical and chemical signatures, which can later be characterized to provide evidence of the origin and process history of an unidentified specimen, a field known as ‘nuclear forensics’. A broad variety of analytical chemistry techniques can provide information about interdicted and post-detonation materials. Here, we present the results of several research studies of uranium-bearing forensic specimens by soft X-ray scanning transmission X-ray microscopy (STXM). STXM yields X-ray absorption spectroscopy data with 25-nm or better spatial resolution, making it possible to quantitatively evaluate variations in oxidation state and other chemical properties across a heterogeneous specimen. Operating in the soft X-ray regime provides access to the NIV,V edges of the actinides and the oxygen K edge, which is highly sensitive to variations in U-O bonding, and consequently carries unique fingerprints of uranium oxides and their hydrates. Thus, this approach makes it possible to evaluate the oxidation state and the heterogeneity of nuclear forensic samples, yielding information on formation or process history, and/or past storage conditions. In studies of U-bearing glassy materials, the L edges of some transition metals (particularly iron, which influences the redox behavior of uranium) can provide additional insights. Technical developments in STXM operations relevant to forensics are also summarized. In particular, we report on improvements in sample preparation and rapid data analysis methods implemented in STXM experiments at Beamline 11.0.2 of the Advanced Light Source.  LLNL-ABS-690941

Dr. David Shuh is a senior scientist in the Heavy Element Chemistry Group of the Chemical Sciences Division and the Director of the Glenn T. Seaborg Center at LBNL. Dr. Shuh’s research focuses comprehensively on the science of the f-elements, in particular the actinide elements with an emphasis on the transuranic elements (e.g., neptunium, plutonium, americium, curium). He is a world-renowned expert in the development of large-scale synchrotron radiation instrumentation and techniques to explore the fundamental chemistry and physics of f-electron materials. His current interests focus on determining the electronic structure and coordination chemistry of f-electron and novel materials to understand their physical and chemical behavior.


Compact quasi-monoenergetic photon applications and sources for nuclear applications

Dr. Cameron Geddes

January 24, 2017

cgrgeddes_145pxNear-monoenergetic photon sources at MeV energies offer improved sensitivity at reduced dose for nuclear nonproliferation and related applications.  Assessments of application-specific benefit from mono energetic photons will be described, including for cargo screening, active interrogation, treaty verification, nondestructive assay, and emergency response.   Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams.  Applications are however restricted by the size of the required high-energy electron accelerator, scattering (photon production) system, and shielding for disposal of the high-energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser.   Designs, and development of an experimental facility to demonstrate a compact photon source using such accelerators will be described, together with the path to a application-relevant photon source system.

Dr. Geddes is a staff scientist in the BELLA center of Lawrence Berkeley National Laboratory, investigating use of laser driven plasma waves to build compact next generation particle accelerators and photon sources.  These accelerators sustain much higher accelerating fields than conventional devices, allowing compact machines.  His current project is developing compact sources of near-monochromatic MeV photons for nuclear material detection and characterization


Cryogenic Gamma-ray detectors with Ultra-High Energy Resolution

Stephan Friedrich

December 1, 2016

friedrichMagnetic microcalorimeter (MMCs) gamma-ray detectors with operating temperatures below 50 mK offer an order of magnitude higher energy resolution than semiconducting Ge and Si detectors. They are based on measuring the change in magnetization after gamma absorption increases the detector temperature. MMCs can have an energy resolution <50 eV at 60 keV, and therefore detect isotopes whose gamma emissions are obscured by line overlap in conventional Ge detectors. The high energy resolution can greatly improve the accuracy of non-destructive analysis of nuclear materials, both in fundamental science and nuclear safeguards applications. We are currently developing arrays of MMC detectors to increase the detector sensitivity. We are also building refrigerators to make operating temperatures of 15 mK accessible fully automated and without the use of cryogenic liquids. This talk discusses the design and performance of MMC gamma detectors at LLNL, and outlines experiments that can serve as thesis project for graduate students who are interested in ultra-high resolution detector development.

Stephan Friedrich received his Ph.D. in Applied Physics from Yale University in 1997 with a dissertation on superconducting tunnel junction X-ray detectors for high-energy astrophysics. He then adapted these detectors for operation at the ALS synchrotron at the Lawrence Berkeley National Lab for biophysics and material science experiments. Since 2002, Dr. Friedrich has led the cryogenic detector group at Lawrence Livermore National Lab, developing ultra-high resolution X-ray and gamma-ray detectors for basic science and national security applications. He has supervised several graduate students who have written their theses on cryogenic detector development and the experiments they enable.

Nuclear Security Programs at Sandia National Laboratories

Sheryl Hingorani

November 7, 2016

HingoraniSheryl Hingorani will describe a variety of Nuclear Security Programs underway at Sandia National Laboratories in Livermore, CA.  Sheryl will also discuss opportunities for possible student intern placements.


Sheryl Hingorani leads Sandia’s Systems Analysis and Engineering organization in Livermore, California. Ms. Hingorani started her career at Sandia in 1986, as a mechanical design engineer, and has spent most of her career working in a variety of positions in Sandia’s Nuclear Weapons program, including as Sandia’s Nuclear Weapons Chief of Staff, and as Chair of the independent Red Team for the Annual Assessment of the state of health of the U.S. nuclear stockpile. Ms. Hingorani received a special appointment to Distinguished Member of Technical Staff at Sandia in 1998, and moved into management in 2004. She completed studies as a Fellow with the Massachusetts Institute of Technology Center for International Studies, and was the recipient of the Leadership Foundation Fellowship from the International Women’s Forum. Between 2000 and 2005, Ms. Hingorani was the Executive Director of the Albuquerque Committee on Foreign Relations; she also served as Secretary for the American Committees on Foreign Relations for two years. Ms. Hingorani is a Laboratory Advisor to the Defense Science Board Special Task Force on Weapons of Mass Destruction, and is a Laboratory Affiliate to the California Council on Science and Technology. She is member of the Society of Women Engineers.

Webinars from 2014-2015