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MOTIVATION

Verifying nuclear nonproliferation is difficult, in that the
goal is to continually confirm the absence of undeclared nu-
clear materials and activities, to say with high confidence that
what we don’t see doesn’t exist. The nuclear security com-
munity has largely relied on physical sensing for detection
of potential clandestine activity. There are many kinds of
information that could complement physical sensing, includ-
ing open source data, publicly available images produced by
commercial or scientific satellites, networked sensors, vari-
ous societal verification tools, quantitative political science
datasets, and social media.

The potential contribution from open-source data is crit-
ical to improving verification and detection. For example,
modern smartphones, of which there are expected to be five
billion by 2020, can without or with inexpensive modification
sense infrasound, sound, infrared, visible, and hyperspectral
light, gamma radiation, and seismic activity. For most of these,
there are analytics companies and interfaces that provide po-
tentially useful content. Both Google and Microsoft provide
open software that could, with training, tell us where every
truck carrying a 48Y cylinder was seen in the background of
a Facebook or Instagram post for any given day across the
entirety of Canada or Australia. With so many types and such
volume of data from so many disparate sources, the nonpro-
liferation community needs effective methods for systematic
analysis of these data and an approach to understanding their
interdependencies.

INFORMATIONAL SENSING

Informational sensing comprises techniques for identifi-
cation of informational signals in open source and other data.
These techniques derive from complexity science and include
network analysis, game theory, nonlinear dynamics, pattern
recognition, machine learning, and artificial intelligence. The
dynamic combination of physical and informational sensing
may allow significantly improved proliferation detection.

A concrete example from a different domain may make

1This report was prepared as an account of work sponsored by an agency
of the United States Government. Neither the United States Government
nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process,
or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favor-
ing by the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect those
of the United States Government or any agency thereof.

this more tangible. Some Western US farms control watering
by combining physical sensing of soil moisture, temperature,
and direct-sun exposure, with informational sensing for loca-
tion in the field (fields are not perfectly flat), predicted weather,
and historical rainfall patterns. The complement of physical
and informational sensing is much more effective than either
could be on its own.

Advances in information technology have yielded a radi-
cal democratization of content and access to the tools to dis-
tribute it. This provides both opportunities and challenges for
nuclear nonproliferation. The combination of physical and
informational sensing enables previously impossible monitor-
ing and verification potential. Yet, it also provides access to
powerful capabilities to those with bad intentions.

It is difficult to directly detect physical signal when skilled
people want to hide it. Adding informational signals and signa-
tures to physical sensing promises to aid analysts in allocating
their focus of attention to the most productive places, times,
and circumstances.

COMPLEX SYSTEMS, STRONG CONSTRAINTS

Development of informational sensors faces different
problems than the corresponding development of physical
sensors. For the latter, a well-understood signal is the target,
and the significance of detection is left to the user of the sen-
sor. Informational signals are context-sensitive, though: high
gamma is (if accurately measured) a unique signal, while a
small, dense packages moved in the depth of the night is am-
biguous without informational context. Since informational
signals are likely to be individually weak, only by correctly
aggregating them will useful mutual support with physical
sensing be provided. Correct aggregation, though, is far from
trivial. Signals can participate in multiple networks, and have
different meanings in each. For instance, hydrogen fluoride
(HF) is used in both the conversion and the reprocessing stages
of the nuclear fuel cycle (NFC). An indirect effect of HF use
might be corrosion of the paint on cars that regularly park next
to a conversion or reprocessing facility. However, as a metals
solvent, HF is used in many other industrial processes, so de-
tection of paint corrosion without supporting context may not
be useful. Table I shows sample indirect evidence of activity
and the signals that might be found in open data.

Much of the context needed to usefully correlate informa-
tional signals and signatures with physical sensing comes from
the intrinsic properties of the NFC. The physics, chemistry,
industrial processes, and supply chain, the necessary timing
of processes, the characteristic co-location of some processes
and even stages, can all be used to localize and constrain po-
tential activities of interest by mapping indirect evidence to
underlying physical and chemical requirements.



Signal Seismic Infrasound Neutron Gamma Effluents Incongruous chemicals
Public sources, Inverse- Darkened glass Smartphones, Animal Labeled actinide
smartphones pressure in photos specialized behavior solvents in unmarked

doors equipment facility

Signal Heat Mass Density Ionization Cell damage Corrosion
Exposed water Vehicle loads, Manner of Unlikely from Foliage, Visible on cars,
warmer than off-vehicle movement of SNM, may indicate hospitalization, buildings, concrete,
background movement small packages VOCs metabolites tire sidewalls

TABLE I. Sample direct and derived indicators of nuclear/radiological materials and chemicals

For example, a fully-loaded 48Y cylinder weighs roughly
8,450 kg and can only travel by major road or rail routes.
There are limits on how fast it can travel, and expected rates of
progress. As we construct a framework for informational sens-
ing, these can be correlated with evidence from open data to
tightly constrain informational search for a specific shipment.
Image data from social media and commercial satellites can
be localized, and those identifications on the restricted set of
possible roads and within the plausible physical and temporal
range of the original sighting can be used for independent
tracking. The rapid commercially-driven advances in semantic
image and video content understanding that make this possible
call for almost monthly monitoring to keep up. For example,
Google’s Open Image API understands ‘transport’ when given
an image of two people carrying a detector. Applying the
constraints we know about materials production and transport
lets us zero in on where to look; advances in mapping, 3D
reconstruction, and image semantics may make it possible to
find the evidence we need.

NETWORKS, SIGNALS, INFORMATION SOURCES,
AND EXAMPLES

We focus on the interlinked and interdependent networks
within which the NFC exists. From a network science per-
spective, each stage represents a node (or at finer resolution,
cluster of linked nodes) in the materials acquisition network,
e.g., a small installation to separate uranium out of phosphate
rock under the guise of fertilizer production would fall under
‘Sourcing.’ Nodes and links have attributes such as equipment,
location, consumables (like ore, chemicals, and/or electricity),
transportation, and so on. Each of these attributes and links
has associated physical and informational signals and signa-
tures. A set of informational and physical signals based on the
particular proliferation pathway can then used as proliferation
indicators.

Our networks fall into five categories: political, military,
economic, infrastructure, and knowledge. There are multi-
ple networks within each category, e.g., political networks
include alliances, regional powers, religious or cultural al-
liances/antagonisms, and so on. Both temporal extent and
content precision vary across networks. We know the steps,
the chemistry and industrial processes, the heat and power re-
quirements, and the minimum time required for converting ore
into yellowcake (impure U3O8 into UF6) with good precision,
while political and economic factors work more slowly and

with less predictability. By combining linked interdependent
networks into multiplex networks,1 two benefits result: (a) the
constraints intrinsic to the physical and chemical processes
can reduce the range of possibilities (search space) for the
political, military, and economics; and, (b) influence can prop-
agate in both directions, down from political decision-making
and up from physicochemical requirements.

There are multiple sources, summarized in Table II. Not
all sources will have equal availability, completeness, and
accuracy for all nations. However, just as what were previ-
ously ‘national technical means’ are now multiple commercial
vendors for satellite imagery, information leakage is only im-
perfectly controllable, even for tightly-controlled nations like
China and Iran.2

ANALYSIS METHODS

Systematic analysis of heterogeneous networks and of
networks of networks group roughly into three types: net-
work content and semantics, network structure, and statistical
analysis/machine learning.

Network content includes all of the specifics that give
power to the constrained correlation approach we advocate.
There are two approaches (at least), semantic networks and
dynamical construction.

Network semantics, also called semantic graphs or on-
tologies, can structure content search by encoding known
relationships, dependencies, content, and co-occurrences in
a logically consistent way. For example, the six steps in wet
conversion can be linked in a set sequence, with chemical, tem-
perature, timing, and heat/cooling requirements specified. Or,
a semantic graph could be used in image analysis to identify
potential processing facilities by the conjunction of perimeter
fences, guard stations, buildings, HVAC patterns, and so on.

Alternately, network construction can be dynamic, with
constraints propagating deterministically, e.g., allowing multi-
ple possible networks (interpretations) to be dynamically gen-
erated with data (or whole networks) being discarded when
inconsistent with physical or chemical NFC processes. In the

1Multiplex network nodes have links to multiple networks; a reprocess-
ing plant, for example, connects to the water, sewage, electrical, and road
networks, to the equipment supply chain network, to the chemical supply
network, and so on.

2We do not here address the ethical, legal, and social issues inevitably
entangled with informational sensing. See http://thebulletin.org/potential-and-
pitfalls-societal-verification for an overview of some of the perspectives.



common case of plausible but underdetermined data, similarity
to prototypical situations can be measured by informational
distance (Shannon entropy), i.e.,

H(X) =
∑n

i=1 P(xi)I(xi)

. . . where the entropy of NFC stage or process X is measured
against the probability (P) and the actual information (I) itself.
For instance, the probability that joint detection of tributyl
phosphate with a volatile organic compound like kerosene
or dodecane is correlated with conversion or reprocessing is
high if it is detected in an isolated area, but low if detected
at an airport (TBP is used in aircraft braking systems, and
kerosene is used as fuel.) Informational entropy is powerful
but not intuitive. It might be helpful to think of an example
of 1000 pixels for a photo representing the ideal (P = 1) item
of interest, and (assuming registration and/or rotation) the
number of non-matching pixels equaling the informational
distance. Both kinds of network semantics can work together,
and in fact need each other.

Network structure analysis examines the connectivity
structures of networks to discover relationships (e.g., [1]),
to detect gaps (e.g., [2]), and to model interdependence (e.g.,
[3]). Multiplex networks, as we are using, have the useful
property of allowing the participating networks to be modeled
using dynamics that make sense for the particular network,
whether historical, Bayesian, deterministic, semantic graph,
or nonlinear/nonequilibrium. Network interdependence is of
particular interest because it provides a quantitative method
for representing potential cascades, in which change in a local
network state can have global consequences. These depen-
dencies are rarely obvious, but can provide potential clues for
heightened focus of attention.

Statistical techniques in machine learning are central to
many of the content analytics within the various NFC-related
networks upon which we rely. For many of the analytic con-
tent sources cited in Table II, re-entrant many-layered neural
networks (deep learning) systems are central [4]. The utility of
deep learning systems is directly correlated with the number
and quality of available examples. Google is better than hu-
mans at facial recognition, having many millions of examples.
However, deep learning would not help discriminate cooling
ponds under ice in an IR image, as a human analyst can, since
there are so few examples.

Our approach does not focus on the social networks that
have been used, with mixed success, to understand, e.g., hos-
tile non-state actors. While such graphs could potentially be
overlaid on our work, we are focused on physical and prag-
matic constraints that will allow us to filter and extract useful
information from the daily open media deluge. Of the ~1.8 bil-
lion photos uploaded to social media daily, only a very few will
have content relevant to proliferation detection. Our choice
of multiplex constraint networks is driven by the need to dis-
card the overwhelming majority of the constantly-generated
content while capturing the tiny scraps of relevant information.

LIMITS OF APPROACH

The knowledge barrier to making a basic, functional
fission device has fallen [5], and the barriers to designing
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Fig. 1. Each network contributes. In the geology network,
thorium and granite mask gamma, and radon masks SNM
ionization. We might note rented industrial facilities or storage
with activity but to which mail is never delivered, particularly
if they are located upwind of a city center.

and manufacturing a sophisticated device will follow, if they
haven’t already. Non-state actors don’t need the arsenals
and concomitant industrial facilities that state-level actors do.
Tracking materials and discovering potential proliferation ac-
tivity is urgent, and the need will increase.

At the same time, the number of analysts is inadequate,
the volume of content they have to sort through is more than a
human can manage; and even something as simple as a travel
budget is often unavailable.3

The approach we have described is not a superhuman
solution, as are beginning to be seen in bounded domains [6].
Rather, it is intended to aid analysts in focusing on the most
likely times and places to discover proliferation-relevant activ-
ities. Frank Pabian, of Los Alamos National Laboratory, has
noted that a ‘serendipity factor’ has been necessary to the suc-
cess of much previous work in open source nonproliferation
monitoring [7]. The multiplex network formalization of NFC
processes has the potential to greatly reduce the need for luck
that has made social media more a promise than a resource.
As we start to see clusters of correlated informational and
physical signals, we can use the basis set to evaluate the likely
proliferation network that the signals arose from and then use
that to target investigation.

CLOSING REMARKS

The value and even the practical possibility of the ap-
proach described above is not yet known. There are many
cases where data fusion has enabled improved capabilities,
and informational sensing and analytics are a strategic re-
source for commercial, manufacturing, and retail industries
worldwide. The space of potential covert proliferation is much
larger than well-understood commercial applications, though,
and even if distinct, repeatable predictive patterns exist human
cognitive limits may not allow us to see them (see [8] for
an example from a far simpler domain). The challenges to
global peace and security posed by nuclear proliferation and
terrorism continue to grow. With advances in computing and
increasing data available, we as the nonproliferation commu-
nity are obligated to develop new methods and innovate in this
space for the promise of a better world.

3Personal communication, independent sources
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Data Type Data Source Content An-
alytics

NFC stage(s)

Maps USGS, Google Maps/Google Earth,
National Geographic Maps, UN GIS

Transport, frame for all stages

News BBC, Al Jazeera, AP, Reuters, Agence
France-Presse

tldr, Agolo,
Clipped

Sources, Power generation

Technical
publications

arXiv.API, CrossRef REST API, IEEE
Explore API

Sources (esp. seawater), Enrichment
(new methods)

Trade data UN ComTrade, World Bank, US Cen-
sus Bureau

Sources, Transport, Power generation,
Storage

IAEA
databases

PRIS, CNPP, RRDB, ARIS, ENDF
(Brookhaven), ICSRS, UDEPO

Sources, Enrichment, Fuel fabrication,
Power generation, Reprocessing

Patents EPO, Google Custom Search/Patents Espacenet Sources (seawater), Sources, Enrich-
ment (new methods)

Public
records

(Too numerous to list) (All stages)

University
and NGO
sites

Arms Control Institute, Nuclear Threat
Initiative, Bulletin of the Atomic Sci-
entists, &c.

Sources (esp. seawater), Enrichment
(new methods), Reprocessing (separa-
tion, new methods)

Nuclear traf-
ficking data

IAEA Illicit Trafficking, NURE, US
EPA Uranium Mines & Mills DB

Sources, Enrichment, Reprocessing

Blogs and
microblogs

Nukes of Hazard, Arms Control Wonk,
Restricted Data, Arms Control NOW

Trends and political factors

Images YFCC100M, Google Cloud ML, Mi-
crosoft API, Hadoop HIPI

Ditto Labs,
Imagga

Sources, Transport, Enrichment, Fuel
fabrication, Power generation, Repro-
cessing, Storage

IR images Smartphones, PIR/IoT, personal gear Transport, Storage
Hyperspectral
images

Smartphones, personal cameras, com-
mercial overflights

Sources (unconventional), Testing

Lidar USGS, Open Topography, Lidar On-
line, NEON, commercial sources

Sources, Testing

Satellite im-
agery

DigitalGlobe, Terra Bella, Planet Labs,
Airbus Pleiades, RADARSAT

Sources, Fuel fabrication, Power gen-
eration, Storage, Transport

SAR UNAVCO, SSARA, UrtheCast (in
dvmt)

Enrichment, Fuel fabrication, Repro-
cessing

Seismic SEI Seismic Exchange, JPL Testing
Video YouTube, Vimeo, GoPro, dashcams Sources, Transport, Enrichment, Fuel

fabrication, Power generation, Repro-
cessing, Storage

Audio, incl.
infrasound

Google Cloud API, Microsoft API,
CarCapture

Transport, Enrichment (centrifuge)

Online com-
munities

Nuclear Issues Forum, PONI Forum,
Reddit

Power generation

Microtasking Amazon Mechanical Turk, Microtask,
Fiverr, Gigwalk

Enrichment, Fuel fabrication, Power
generation, Reprocessing, Storage (hu-
man search/validation)

Contests Kaggle, InnoCentive, TopCoder,
TunedIT, Challenge.gov

Enrichment, Reprocessing, Storage
(all: irregularities in data)

TABLE II. Open source and social media, with analytics providers or services and relevant NFC stage(s)


