The impact of prompt neutron emission from fission fragments on the final abundance pattern of the astrophysical r-process

Alex Dombos
Michigan State University
Nuclear and Particle Physics
Overview

- Research performed with mentor Matthew Mumpower at Los Alamos National Laboratory
 - Eight weeks
 - NSSC LANL Summer Program
- Astrophysical r-process
- Nuclear fission
 - Prompt neutron emission
- r-process network calculation
 - Impact on the final abundance pattern of the r-process
Astrophysical r-process

\[t = 0.00424066 \text{ s, } T_\text{e} = 2.0, \rho = 88550000.0 \text{ g/cm}^3 \]
Fission

(Z, A)

Time Evolution
Fission

(Z, A)

Time Evolution
Fission

Time Evolution

\((Z, A)\)

\((Z_L, A_L)\) \(\rightarrow\) \((Z_L, A'_L)\)

\((Z_H, A_H)\) \(\rightarrow\) \((Z_H, A'_H)\)
Fission

Time Evolution

(Z, A)

(Z_L, A_L)

(Z_H, A'_L)

γ

n

(Z_H, A_H)

(Z_H, A'_H)

(Z'_L, A'_L)

β

ν

(Z'_H, A'_H)
Fission Yield
(Fission Fragment Mass Distribution)

Fission Yield
(Fission Fragment Mass Distribution)

T. Kodama, and K. Takahashi,
Nucl. Phys. A 239 (1975) 489

\[
Z_{\text{fission}} = \sum_{Z} \sum_{A} Y(Z, A) \cdot Z
\]

\[
A_{\text{fission}} = \sum_{Z} \sum_{A} Y(Z, A) \cdot A
\]
Fission Yield
(Fission Fragment Mass Distribution)
Prompt Neutron Emission

Modifying the Yields

\[n, \text{ Number of Prompt Neutrons from a Single Fragment} \]
Modifying the Yields

\[Y(Z, A) \]

\[n, \text{ Number of Prompt Neutrons from a Single Fragment} \]

\[P(n) \]
Modifying the Yields

\[Y(Z, A) = Y(Z, A - 1) + Y(Z, A) \times P(1) \]

\[Y'(Z, A) = Y(Z, A) \times [1 - P(1)] \]

\[n, \text{ Number of Prompt Neutrons from a Single Fragment} \]

\[\frac{\nu_{\text{total}}}{2} \]
Modifying the Yields

\[Y(Z, A) = Y(Z, A - 1) + Y(Z, A - 2) + Y(Z, A) \times P(2) \]

\[Y'(Z, A) = Y(Z, A) [1 - P(1) - P(2)] \]

\(n \), Number of Prompt Neutrons from a Single Fragment
Modifying the Yields

\[Y(Z, A) = Y(Z, A - 1) + Y(Z, A) \cdot P(n) \]

\[Y'(Z, A) = Y(Z, A) \left[1 - \sum_{n>0} P(n) \right] \]

\[Y'(Z, A - n) = Y(Z, A - n) + Y(Z, A) \cdot P(n) \]
Modifying the Yields

\[
\begin{align*}
Z_{\text{fission}} &= \sum_Z \sum_A Y(Z, A) \cdot Z \\
A_{\text{fission}} &= \sum_Z \sum_A Y(Z, A) \cdot A
\end{align*}
\]
Modifying the Yields

\[
Z_{\text{fission}} = \sum_Z \sum_{A'} Y(Z, A') \cdot Z
\]

\[
A_{\text{fission}} = \sum_Z \sum_{A'} Y(Z, A') \cdot A' + \bar{\nu}_{\text{total}}
\]
Modifying the Yields

\[Z = 100, \; N = 180, \; A = 280 \]

Graph 1: Y(Z) (%) vs. Atomic Number, Z
- Original
- Conservation of Energy (\(\bar{\nu}_{\text{total}} = 4.90 \))
- Howerton Systematics (\(\bar{\nu}_{\text{total}} = 3.72 \))

Graph 2: Y(A) (%) vs. Mass Number, A
- Original
- Conservation of Energy (\(\bar{\nu}_{\text{total}} = 4.90 \))
- Howerton Systematics (\(\bar{\nu}_{\text{total}} = 3.72 \))
Modifying the Yields

$Z = 100, \ N = 180, \ A = 280$

- **Original**
- **Conservation of Energy ($\tilde{\nu}_{\text{total}} = 4.90$)**
- **Howerton Systematics ($\tilde{\nu}_{\text{total}} = 3.72$)**

Atomic Number, Z

Mass Number, A
- Use the modified yields in an r-process network calculation, and investigate the impact on the final abundance pattern
- Portable routines for integrated nucleosynthesis modeling
- Developed by mentor Matthew Mumpower at Los Alamos National Laboratory
Neutron-induced and β-delayed Fission

![Graph showing the weighted timescale of various nuclear processes over time](image)
Neutron-induced and β-delayed Fission
Neutron-induced and β-delayed Fission
Neutron-induced and β-delayed Fission

![Graph showing abundance vs. mass number for different fission types and solar system r-process residuals.]

- Baseline
- Prompt neutron emission
- Solar system r-process residuals
Neutron-induced and β-delayed Fission

Global impact – impacts the entire final abundance pattern
Neutron-induced and β-delayed Fission

Nonlinear – certain regions are impacted while others are not
Neutron-induced and β-delayed Fission

Peaks shift in mass number
Neutron-induced and β-delayed Fission

```
```

```

“Fine details”
Conclusions

- Prompt neutron emission from fission fragments impacts the fine details of final abundance pattern of the r-process.
- This project will be continued and expanded upon by the FIRE (fission in r-process elements) collaboration, which uses state-of-the-art theory to explore the role of fission in the r-process, and includes scientists from the University of Notre Dame, North Carolina State University, Los Alamos National Laboratory, Brookhaven National Laboratory, and Lawrence Livermore National Laboratory.
Disclaimer

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Details of presentation:

- Main focus to present your research to NSSC partners, sponsor, and the advisory board.
- Keep in mind this will be a 15 minute presentation, with an additional 5 minutes for questions.
- Please include mention of the NSSC Focus Areas and any Crosscutting Focus Areas you are working under.
- Highlight any lab collaborations involved in your research, with specific mention of lab and lab mentor.
Modifying the Yields

\[
\bar{\nu}_{total} = \sum_{Z} \sum_{A} Y(Z, A) \cdot \bar{\nu}(A)
\]
Abundance Weighted Timescale

\[
\tau_{n,\gamma} = \frac{\sum_{Z,A} Y(Z, A)}{\sum_{Z,A} N_n \langle \sigma \nu \rangle_{Z,A} Y(Z, A)}
\]

\[
\tau_{\gamma,n} = \frac{\sum_{Z,A} Y(Z, A)}{\sum_{Z,A} \lambda_{\gamma,n}(Z, A) Y(Z, A)}
\]

\[
\tau_{\beta} = \frac{\sum_{Z,A} Y(Z, A)}{\sum_{Z,A} \lambda_{\beta}(Z, A) Y(Z, A)}
\]
Conservation of Energy

\[ E_r = M(Z, A) - M_L(Z_L, A_L) - M_H(Z_H, A_H) \]
\[ = T_L(Z_L, A_L) + T_H(Z_H, A_H) + E^*_L(Z_L, A_L) + E^*_H(Z_H, A_H) - (E_n + S_n) \]
\[ = T_f^{total} + E_n^{total} - (E_n + S_n) \]
\[ = \langle T_f^{total} \rangle + \langle E_n^{total} \rangle - (E_n + S_n) \]
\[ = \langle T_f^{total} \rangle + \langle E_n^{total} \rangle + \langle E^*_\gamma \rangle - (E_n + S_n) \]
\[ = \langle T_f^{total} \rangle + \bar{\nu} [\langle S_n \rangle + \langle \epsilon \rangle] + \langle E^*_\gamma \rangle - (E_n + S_n) \]

- Eqn. 17 in *Nuclear Physics A 772 (2006) 113–137* by D.G. Madland
- \( E_r \) = Q value = total energy release in binary fission
- \( \langle T_f^{total} \rangle \) = average total fragment kinetic energy
- \( \langle E_n^{total} \rangle \) = average total fragment excitation energy
- \( \langle E_n^{total} \rangle \) = average total fragment neutron emission energy
- \( \langle E^*_\gamma \rangle \) = average total fragment gamma-ray emission energy
- \( \langle S_n \rangle \) = average fragment neutron separation energy
- \( \langle \epsilon \rangle \) = average center-of-mass energy of emitted neutrons
- \( E_n \) = kinetic energy of incident neutron
- \( S_n \) = neutron separation energy of compound nucleus
Conservation of Energy

- \( E_r = Q \) value = total energy release in binary fission
  - Binding energies from FRDM 2012
  - \( E_r = M(Z, A) - M_{L}(Z_L, A_L) - M_{H}(Z_H, A_H) \)
    \[ = \sum_{Z,A} BE(Z, A) \cdot Y(Z, A) - BE(Z_c, A_c) \]

- \( \langle T_f^{total} \rangle = \) average total fragment kinetic energy
    - \( \langle T_f^{total} \rangle = 0.1189 \frac{Z_c^2}{A_c^{1/3}} + 7.3 \)

- \( \langle E_{\gamma}^{total} \rangle = \) average total fragment gamma-ray emission energy
    - \( \langle E_{\gamma}^{total} \rangle = 0.02772 \cdot A_c + 0.0891 \)
Conservation of Energy

- \( <S_n> \) = average fragment neutron separation energy
  - Binding energies from FRDM 2012
    \[ \langle S_n \rangle = \sum_{Z,A} S_n(Z,A) \cdot Y(Z,A) \]
- \( \langle \varepsilon \rangle \) = average center-of-mass energy of emitted neutrons
    - \( \langle \varepsilon \rangle \approx 2.34 \text{ MeV} \)
- \( E_n \) = kinetic energy of incident neutron
  - Assume thermal energies in r-process
    - \( \langle E_n \rangle \approx 0 \)
- \( S_n \) = neutron separation energy of compound nucleus
  - Binding energies from FRDM 2012
Howerton Systematics

- Based on a Taylor expansion about $^{235}\text{U}(n,f)$ at the threshold energy for fission $E_{th}$
- Tested against $\langle \nu \rangle$ for isotopes from $^{229}\text{Th}$ to $^{249}\text{Cf}$ in 1977
- Threshold energies calculated using binding energies from FRDM 2012

$$\bar{\nu}(Z, A, E_n) = 2.33 + 0.06 \cdot (2 - (-1)^{A+1-Z} - (-1)^Z)$$
$$+ 0.15 \cdot (Z - 92) + 0.02 \cdot (A - 235)$$
$$+ (0.130 + 0.006 \cdot (A - 235)) \cdot (E_n - E_{th})$$

$$E_{th}(Z, A) = 18.6 - 0.36 \cdot Z^2/(A + 1)$$
$$+ 0.2 \cdot (2 - (-1)^{A+1-Z} - (-1)^Z) - S_n(Z, A + 1)$$
Neutron-induced Fission

![Graph showing time (s) vs. abundance weighted timescale (s) with different decay processes labeled: neutron capture \((n, \gamma)\), photodisintegration \((\gamma, n)\), \(\beta\) decay, \(\alpha\) decay, \((n, 2n)\), and neutron-induced fission.]}
Neutron-induced Fission

![Graph showing time (s) vs. abundance weighted timescale (s) with legend for neutron capture (n, γ), photodisintegration (γ, n), β decay, α decay, (n, 2n), and neutron-induced fission.]
Neutron-induced Fission

Baseline
Prompt neutron emission
Solar system r-process residuals

Abundance ($\text{Si} = 10^6$)

Mass Number, A
Neutron-induced Fission

Global impact – impacts the entire final abundance pattern
Neutron-induced Fission

Nonlinear – certain regions are impacted while others are not
Neutron-induced Fission

“Fine details”
β-delayed Fission

![Graph showing τ, the abundance weighted timescale, vs. time (s) for different processes: neutron capture (n, γ), photodisintegration (γ, n), β decay, α decay, (n, 2n), and β-delayed fission.](image)
β-d delayed Fission
β-delayed Fission

![Graph showing abundance vs mass number with different lines representing baseline, prompt neutron emission, and solar system r-process residuals.](image-url)
β-delayed Fission

Peaks shift in mass number