Lecture 4 Nuclear Fission

Discovery of Nuclear Fission – December 1938

Hahn and Strassmann

December 1938

F. P.
$$Z = 30 - 62$$

Some important historical details

Szilard's conception of a chain reaction, 1930's (interestingly *before* the discovery of fission)

Some more important historical details

Alfred Nier and John R. Dunning demonstrate that it is the *minority* component of uranium that is fissionable by slow neutrons, in 1940 (i.e. the 0.72% ²³⁵U rather than ²³⁸U)

Nier & Dunning

Nier's mass spectrometer

Mass spec ion source

Foil catcher

Some exciting local history

Glenn Seaborg produces & isolates first ²³⁹Pu December 14, 1940 Macroscopic quantity precipitated out at Univ. Chicago Met Lab, September 1942

The first sample of ²³⁹Pu containing 2.7-micrograms of oxide was weighed on September 10, 1942, at the University of Chicago's Metallurgical Laboratory. It is shown here as a deposit on a platinum foil held by forceps.

In Summer 2014, EH&S informed us that they thought they had it in a cigar box, and asked it we wanted it! Prof. Rick Norman, and two students confirmed it by gamma spectroscopy

Fission - the basic picture

The curve of binding energy

Expanding the scale around B.E. = 8 MeV

How is the energy released partitioned?

Energy from Fission of ²³⁵ U	MeV
Fission fragment kinetic energy	166
Neutrons (~2.5 total)	5
Prompt gamma rays	7
Fission product gamma rays	7
Beta particles	5
Neutrinos (not useful energy)	10
TOTAL	200

Look closely – where will the fission fragments land?

Statistically, fission is asymmetric What happens to the fragments after

What are the two isotopes from which one can most readily make either a nuclear reactor or a weapon?

• 235_U

- Minority component of natural U (0.7%)
- Four separation methods: electromagnetic, gaseous diffusion, centrifuge, laser isotope

• ²³⁹Pu

- Produced as a by-product in ²³⁵U reactors
- Then can be easily chemically separated

$$- \quad \substack{238 \\ 92} \text{U} \; + \; \substack{1 \\ 0} \text{n} \; \longrightarrow \; \substack{239 \\ 92} \text{U} \, \stackrel{\beta^-}{\longrightarrow} \, \substack{239 \\ 93} \text{Np} \, \stackrel{\beta^-}{\longrightarrow} \, \substack{239 \\ 94} \text{Pu}$$

Both fission upon capture of *slow* neutrons (thermal)

Fission products

 Fission produces a vast number of different isotopes, of widely varying half-lives & activities

- It's not the very short lived, or the very long lived that are problematic, but the ones in between
 - Shows up as radiation and heat

A few which are responsible for much of the radioactivity in spent fuel: ¹³⁷Cs (30.17 a, 1.176 MeV), ¹²⁹I, ⁹⁰Sr (28.79 a, 0.546 MeV) ...

A = 137 (IAEA database) & 137 Cs

Fission on YouTube

https://www.youtube.com/watch?
 v=RgZDXxux9s4#t=514.182951

https://www.youtube.com/watch?
 v=mBdVK4cqiFs