NE/PP 285C Spring 2019

Where Does the Fuel Come From?

Technical Lecture 9 March 4 & 6, 2019

Nuclear Weapons Require ²³⁵U or ²³⁹Pu as their Fuel

The first sample of ²³⁹Pu containing 2.7-micrograms of oxide was weighed on September 10, 1942, at the University of Chicago's Metallurgical Laboratory. It is shown here as a deposit on a platinum foil held by forceps.

By 1940, the world's separated ²³⁵U was a tiny smudge on a metal foil in Nier's mass spectrograph, and by 1942, the world's supply of ²³⁹Pu was a fleck of pepper. But by 1945, the US would be producing hundreds of kilograms of fuel per year.

Enrichment and Reprocessing

²³⁵U exists as a tiny component of natural uranium, (0.72%); to get weapons-grade uranium (>90%) requires *enrichment*.

²³⁹Pu does not exist naturally, but is created as a byproduct of reactor operation. To get weapons-grade plutonium requires *reprocessing*.

I will only talk about enrichment technologies today; reprocessing will be discussed by Prof. Rebecca Abergel later.

Country	rable Resources of Uranium (2009) Tonnes U		Percentage of world (%)			
Australia	1,673,000	31				
Kazakhstan	652,000	12				
Canada	485,000	9	Where is			
Russia	480,000	9	U found?			
South Africa	295,000	5				
Namibia	284,000	5	(data 2009)			
Brazil	279,000	5				
Niger	273,000	5				
USA	207,000	4	BTW, Seawater is			
China	171,000	3	3 ppb Uranium,			
Jordan	112,000	2	x500 all reserves			
Uzbekistan	111,000	2	currently known.			
Ukraine	105,000	2				
India	80,000	1.5				
Mongolia	49,000	1				
Other	150,000	3				
World total	5,404,000					

Where is Uranium being produced?

Global Mined Uranium Production - Appx. 150 million lb.

Four Methods of Enrichment of ²³⁵U

After conversion to Uranium Hexafluoride UF_6 (highly corrosive):

- Gaseous Diffusion
- Electromagnetic Separation
- Gas Centrifuge
- Laser Isotope Separation

All have been used; the first two being how ²³⁵U was separated for the Manhattan Project

The diffusion barrier is a semipermeable membrane (e.g. sintered nickel) with nanometer-scale pores

Gaseous Diffusion – Physics Basis

The Diffusion Coefficient D is inversely proportion to the square root of the mass of the species i:

$$D_i \propto \sqrt{\frac{1}{m_i}}$$

The atomic weight of $^{235}UF_6$ is 349; that for $^{238}UF_6$ is 352. Thus the ratio of the two differs by a small degree:

$$\frac{D_{235}}{D_{238}} = \sqrt{\frac{352}{349}} \approx 1.0043$$

The enriched output of a stage is optimized when half the gas passes through the barrier, and including non-ideal performance, a typical enrichment per stage is $r \approx 1.0014$

Gaseous Diffusion - Cascade

This might suggest a cascade like this:

Where F = Feed, P = Product, W = Waste

Gaseous Diffusion - Cascade

This might suggest a cascade like this:

Where F = Feed, P = Product, W = Waste

But this would be a terrible idea! Think

Gaseous Diffusion – Simple Symmetric Cascade

If: r = enrichment factor

 x_F = enrichment of the Feed

 x_p = enrichment of the Product

 x_W = enrichment of the Waste

Then it is easy to show the number of stages is given by

$$r^{N} = x_{P}/x_{W}$$
, or $N = \ln(x_{P}/x_{W}) / \ln(r)$

Thus for $x_p = 0.93$, $x_W = 0.004$, $N \approx 3900$

More cascades ...

Square cascade

Symmetric cascade

Mathematically Optimized Cascades

As with everything, there are multiple independent variables, & it depends on what you want to optimize

Feed

The K-25 Plant in Oak Ridge from WW-II (more recent photo) The scale was staggering – a mile long, taking 3 GW of power

Portsmouth Gaseous Diffusion Plant, Pike County, OH (1954-2001)

Electromagnetic Separation

Remember Nier's spectrometer? EM Separation is nothing more than a massively scaled up version.

Nier & Dunning

Nier's mass spectrometer

Foil catcher

Electromagnetic Separation – Physics

When one accelerates an ion of charge q across a voltage drop V, it has a kinetic energy K = qV, independent of mass.

But the momentum p does depend on its mass: $p = \sqrt{2mK}$

And the radius of curvature ρ in a magnetic field B is proportional to its momentum:

$$\frac{p}{q} = B \cdot \rho$$

For a singly-charged ion, q = e, p [GeV/c] = 0.3 B [T] ρ [m].

Electromagnetic Separation - Schematic

MAGNETIC FIELD PERPENDICULAR
TO PLANE OF DRAWING

Ernest Lawrence's conception of the Calutron

THE E M METHOD OF SEPARATING THE COMPONENTS OF TUBALLOY

EM Separation – Prototype at 184" Cyclotron

The original structure is a historical landmark, and houses the ALS, a third-generation synchrotron light source

The "Calutron Girls" of Oak Ridge

Summary of the EM Separation with the Calutron

- The Calutron was a difficult technology; there were constant maintenance and reliability issues; in the end, the Alpha Calutron was only partially successful, but the Beta Calutron was much better and ultimately produced 95% enriched ²³⁵U.
- In fact, the K-25 Gaseous Diffusion plant and the Calutrons worked in tandem, passing uranium at different levels of enrichment back and forth, to optimize yield.
- Calutrons were very lossy and inefficient; only 1/6000 of the feedstock became usable fuel. The uranium splattered all over the inside of the machine, and it had to be scraped off for recovery.
- It was also very expensive; the whole Calutron program cost \$9B.
- Due to wartime shortages of copper, which went to artillery shells, the Manhattan project used all 14,000 tons of silver (!) from Ft. Knox for high-conductivity wire. Every last ounce was returned.
- But within the context of the crash program it did its job.

Iraq developed a sophisticated EMS system as part of their nuclear weapons program

David Kay & Jay Davis, cover of Physics Today, July 1992

The EMS Facilities were at Tarmiya & Al Sharqat

One of two Transformer buildings at Tarmiya with 64 1-MW transformers each. The Iraqis had buried the power lines to conceal the plant from NTM.

Iraqi convoy of trucks trying to surreptitiously spirit away components of their EMS plant

The Gas Centrifuge

- Principle is old, but practical design derives from post-war German & Austrian scientists taken to the USSR (Zippe centrifuges)
- Much higher separation factor than for gaseous diffusion, ideally $\alpha \approx 1.3$
- Requires sophisticated engineering and specialized components, mostly under Export Control Laws
- Operates at very high rotational speeds, 60,000 rpm or higher
- A.Q. Khan, working for Urenco brought this technology to Pakistan for their nuclear weapons program, and then exported it to North Korea, Iran & Libya
- Centrifuges are the proliferation risk today (see article by R. Scott Kemp)

Mathematically Optimized Cascades

As with everything, there are multiple independent variables, & it depends on what you want to optimize

Feed

The proliferation issue in numbers

Natural Uranium: 0.72 %

Low-Enriched Uranium (LEU): < 20 %

Typical reactor-grade3-5 %

High-Enriched Uranium (HEU) > 20 %

Bomb grade Uranium90 %

The surprising logic of enrichment cascades (I)

Stage No.	Tail	Feed	Head	Feed	No. of	SWU
	enrichment	enrichment	enrichment		centrifuges	
1	0.00405303	0.00490963	0.00594618	639.064	16	250.492
2	0.00490963	0.00594618	0.0072	1167.39	30	457.579
Feed	0.00594618	0.0072	0.00871588	1604.64	41	628.966
Point $\rightarrow 3$						
4	0.0072	0.00871588	0.0105475	1325.43	34	519.526
5	0.00871588	0.0105475	0.0127591	1095.13	28	429.257
6	0.0105475	0.0127591	0.0154272	905.181	23	354.802
7	0.0127591	0.0154272	0.0186427	748.504	19	293.389
8	0.0154272	0.0186427	0.0225131	619.274	16	242.735
9	0.0186427	0.0225131	0.0271648	512.681	13	200.954
10	0.0225131	0.0271648	0.0327454	424.761	11	166.492
11	0.0271648	0.0327454	0.039426	352.241	9	138.067
12	0.0327454	0.039426	0.0474027	292.424	8	114.621
13	0.039426	0.0474027	0.0568978	243.084	7	95.2809
14	0.0474027	0.0568978	0.0681586	202.385	6	79.3282
15	0.0568978	0.0681586	0.0814557	168.812	5	66.169
16	0.0681586	0.0814557	0.0970766	141.118	4	55.3136
17	0.0814557	0.0970766	0.115317	118.271	3	46.3582
18	0.0970766	0.115317	0.136467	99.4206	3	38.9696
19	0.115317	0.136467	0.160791	83.8664	3	32.8729
20	0.136467	0.160791	0.188504	71.0293	2	27.8412
21	0.160791	0.188504	0.219742	60.4317	2	23.6873

The surprising logic of enrichment cascades (II)

22	0.188504	0.219742	0.254534	51.6793	2	20.2566
23	0.219742	0.254534	0.292767	44.4464	2	17.4215
24	0.254534	0.292767	0.334169	38.4639	1	15.0766
25	0.292767	0.334169	0.378294	33.5092	1	13.1345
26	0.334169	0.378294	0.424531	29.398	1	11.5231
27	0.378294	0.424531	0.472127	25.9773	1	10.1823
28	0.424531	0.472127	0.520235	23.1199	1	9.06225
29	0.472127	0.520235	0.567971	20.7193	1	8.12131
30	0.520235	0.567971	0.614478	18.6864	1	7.32446
31	0.567971	0.614478	0.658983	16.9454	1	6.64205
32	0.614478	0.658983	0.700852	15.4316	1	6.04869
33	0.658983	0.700852	0.739612	14.0887	1	5.5223
34	0.700852	0.739612	0.774962	12.8666	1	5.04329
35	0.739612	0.774962	0.806767	11.7199	1	4.59384
36	0.774962	0.806767	0.835034	10.6061	1	4.15723
37	0.806767	0.835034	0.859884	9.48348	1	3.71722
38	0.835034	0.859884	0.881522	8.31044	1	3.25742
39	0.859884	0.881522	0.900206	7.0433	1	2.76075
40	0.881522	0.900206	0.916224	5.63492	1	2.2087
41	0.900206	0.916224	0.929871	4.03288	1	1.58076
42	0.916224	0.929871	0.941437	2.17758	1	0.853542
Total					306	4419.12

Laser Isotope Separation Principle

Isotope shift and hyperfine splitting in ²³⁵U results in atomic lines distinctly offset from those in ²³⁸U. After invention of tunable dye lasers, it became practical to selectively excited and ionize ²³⁵U.

Laser Isotope Separation - Schematic

In the laser system used for the LIS uranium enrichment process (right), electrons from the ²³⁵U atoms are separated (left), leaving positively charged ²³⁵U ions that can be easily collected for use.

LIS plant-scale dye laser chains absorb green light from solid-state lasers and reemit it at a color that can be tuned to the isotope of interest. For uranium enrichment, the green light was converted to red-orange light of three different wavelengths that are absorbed only by uranium-235.

AVLIS Summary

- Program began in 1973 at Lawrence Livermore National Lab.
- The pilot plant did successfully produce ton-quantities of ²³⁵U.
- Ultimately transferred to US Enrichment Corporation (USEC).
- In 1999, USEC closed down the program, at a loss of \$100M.
- This is a high-tech path to enrichment, but not beyond the means of moderately technically advanced nations nowadays, although the capital investment is significant.
- It is a proliferation challenge, as its power requirements are very low compared to gaseous diffusion or gas centrifuges.
- There was one scientific fruit of the AVLIS program however ...

Laser Guide Star system for Astronomy (Claire Max, Will Happer)

