

Nuclear Science and Security Consortium

September Workshop and Advisory Board Meeting

Demonstration of an Approach to Precisely Measure Gamma-ray Branching Ratios for Long-Lived Beta Emitters

September 11, 2017

Amber Hennessy

University of California Irvine

Modeling and Simulation, Radiation Detection and Measurement, Nuclear Data

September 11 - 12, 2017

Presentation Outline

- Project Overview (Specifically ⁹⁵Zr)
- Sample Production CARIBU
- γ -ray and $\beta\gamma$ Coincidence Measurement
- β Detector Simulation GEANT4
- Beta Efficiency Calculation
- Branching Ratio Calculation
- Future Plans (¹⁴⁴Ce and ¹⁴⁷Nd)

Reduce uncertainties in fission product y-ray branching ratios

Collaboration between UC Irvine, Lawrence Livermore National Lab (LLNL), Argonne National Lab (ANL), and Texas A&M University (TAMU)

- Create ultra-pure radioactive sample at the CARIBU facility at ANL
 - ⁹⁵Zr (calibration), ¹⁴⁷Nd, ¹⁴⁴Ce
- Measure β particles and γ-rays in coincidence at TAMU
 - **β particles** measured with custom-built 4π gas-flow proportional counter
 - γ-rays measured with precision HPGe
- Simulate β detector response to confirm experimental measurements

 Branching ratio is the fraction of a specific decay emitted over all the decays

- ⁹⁵Zr BR is well known
 - Used as a calibration source, test of the method
- BR can be used to determine the number of decays

-
$$N_{decays} = \frac{N_{\gamma}}{BR_{\gamma} * \varepsilon_{\gamma}}$$

- From the number of decays, one can determine the number of fissions with more certainty

Difficulties

- "Dark" Decays (¹⁴⁷Nd, ¹⁴⁴Ce)
 - Not all γ-rays are emitted (internal conversion electrons instead)
 - All emitted $\gamma\text{-rays},\,\beta$ particles, and CE need to be measured

Purity of Sample

– Difficult to separate interested β particle decays from contaminants

Self-Attenuation

- Low Q value energies
 - 399, 367, and 160 keV
- Charged particle gets absorbed in foil and not detected
- Precision Measurement

CARIBU – Source Production

- CARIBU:
 - 252Cf spontaneous fission source
 - lonized to +2 charge
 - Mass separated (A=95)
 - Implanted onto ultra-thin carbon foil
- Reduces effects from sample purity and self-attenuation

0.2 µm Carbon Foil

Isotope Details - ⁹⁵Zr, A = 95

Experimental Measurement (TAMU)

- HPGe (γ-ray):
 - Detector efficiency known with uncertainty of 0.2%

• β Detector

- -4π gas flow proportional counter
- High detector efficiency for CARIBU samples
 - Dependent on the isotope and electronic threshold

Coincidence Measurement

- Must detect both a β and γ within 2 μs
- Creates clean γ spectrum with little interference from background

γ-ray Spectrum and βγ Coincidence Spectrum

β Efficiency of β Detector

$$R_{\beta\gamma} = R * \varepsilon_{\beta} * \varepsilon_{\gamma} * BR$$

$$R_{\gamma} = R * \varepsilon_{\gamma} * BR$$

- $R_{\beta\gamma}$ = rate of $\beta\gamma$ coincidence
- *R* = rate of isotopic decay
- R_{γ} = rate of γ coincidence
- ε_{β} = transition beta efficiency
- ε_{γ} = peak gamma efficiency
- $BR = \gamma$ -ray branching ratio

β detector efficiency

- Dependent on
 - Energy of β particle
 - Electronic threshold of detector

Experimental measurements can be confirmed with simulation results!

GEANT4 Simulations of β Detector Efficiency

- Simulate:
 - $-4\pi\beta$ detector design
 - Isotope specific
 - β energy spectrum
 - Fermi function (+ nucleus vs. β interaction)
 - Nuclear size
 - Transition specific
 - β particle
 - γ-ray
 - Conversion electron
- Compare experimental β detector efficiencies for specific transitions

Beta Efficiencies for ⁹⁵ Zr and ⁹⁵ Nb										
		Simulations with a	4.6 keV Threshold	Measured Values						
Isotope	β Energy (keV)	β Efficiency (%)	Uncertainty (%)	β Efficiency (%)	Uncertainty (%)					
⁹⁵ Zr	366.9	76.90	0.80	76.85	0.76					
⁹⁵ Zr	399.4	78.70	0.77	79.89	0.69					
⁹⁵ Nb	159.8	86.14	1.24	86.27	1.25					

Branching Ratio Calculation

- $R_{\beta\gamma}$ = rate of $\beta\gamma$ coincidence
- $R_{\beta_{isotope}}$ = rate of emitted beta particles
- ε_{γ} = efficiency of γ -rays
- $\varepsilon_{\beta_{isotope}}$ = efficiency of isotope beta particles
- $\varepsilon_{\beta_{peak}}$ = efficiency of specific transition

⁹⁵ Zr Branching Ratios									
lsotope	Energy (keV)	Literature (Nudat, %)	Absolute Uncertainty (%)	Measured (%)	Absolute Uncertainty (%)				
⁹⁵ Zr	724.2	44.27	0.22	44.16	0.47				
⁹⁵ Zr	756.7	54.38	0.22	54.16	0.56				
⁹⁵ Nb	765.8	99.81	0.01	99.45	1.01				

Future Plans

- Applying these calculations to other, more complex data sets:
 - ¹⁴⁷Nd data
 - ¹⁴⁴Ce data

Apply more complex corrections

- Decay correct differences in collection time of γ -ray and $\beta\gamma$ coincidence measurements
- Correct for feeding of higher excited states
- Correct for large influence of conversion electrons

Determination of uncertainty contributions

- Normalization of background γ-ray spectra
- Gain shifts over time
- Peak fitting abilities

Determine if repeat experiments are necessary

Measurements of ⁹⁵Zr and ¹⁴⁷Nd

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

- University of California Irvine:
 - A.J. Shaka
 - Mikael Nilsson
- Lawrence Livermore National Laboratory:
 - Nicholas Scielzo
 - Kay Kolos
 - Mark Stoyer
 - Anton Tonchev

- Texas A&M University:
 - John Hardy
 - Victor lacob
- Argonne National Laboratory:
 - Guy Savard
 - Jason Clark
 - UC Berkeley:
 - Eric Norman
 - Brian Champine

