Nuclear Science and Security Consortium
Virtual Scholar Showcase 2020

Independent and Cumulative Fission Yield Covariance Matrices for 61 Compound Systems

June 2, 2020

Eric F. Matthews
UC Berkeley
Introduction

Lee A. Bernstein, Bethany L. Goldblum, Walid Younes, Josh A. Brown, Jon C. Batchelder

Jennifer J. Ressler, Anton P. Tonchev, Jack Silano

Denise Neudecker, Toshihiko Kawano

Bruce D. Pierson
Motivation

• The 1994 fission yield evaluation by England and Rider does not include information on covariances between fission yields. [1]

• Covariances between fission yields affect a number of important applications:
 – Forensics and safeguards calculations
 – Reactor antineutrino rates
 – Reactor inventory, decay heat, and poisoning

Previous Work

- **Pigni et al. – 2013**
 - Variance estimation with Wahl systematics
- **Schmidt – 2013**
 - Parameters perturbation in the GEF code
- **Leray et al. – 2017**
 - Parameters perturbation in the GEF code
- **Kawano and Chadwick – 2013**
 - Bayesian method for 239Pu FPY

- Work by Pigni, Schmidt, and Kawano presented in WPEC Subgroup 37
- Work by Pigni, Schmidt, and Leray relies on an underlying model of fission and parameter uncertainties.
- Results of these work are not readily accessible due in part to ENDF format limitations.
Motivation

- The goal of this work is to generate a set of covariance matrices for the fissioning systems of the England and Rider evaluation with as little fission model bias/uncertainty as possible.
- This method seeks to use simple conservation rules in order to constrain a sample space for Monte-Carlo bootstrapping.
- The resulting covariance matrix will predominantly reflect the evaluated uncertainties in the independent fission yields.
- Once these matrices are generated, making them available online will be a priority.
Monte-Carlo Uncertainty Propagation

- Given a dataset with characterized uncertainty; one builds a new series of datasets by resampling the original one.
 - This can be used to assess uncertainties and covariance in an output calculation by varying the input data.
 - It could also be used to assess covariances between the values in the original dataset.

- This can be applied to generate covariance matrices for FYs:
Monte-Carlo Uncertainty Propagation

- Given a dataset with characterized uncertainty; one builds a new series of datasets by resampling the original one.
 - This can be used to assess uncertainties and covariance in an output calculation by varying the input data.
 - It could also be used to assess covariances between the values in the original dataset.

- This can be applied to generate covariance matrices for FYs:

 However, resampling fission yields like this – independently of each other – will yield **no correlation/covariance**.
Conserved Quantities

- In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

Total Yield:

\[\sum_{i} Y_i = 2 \]

Conserved Quantities

- In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

\[\sum_i Y_i = 2 \]

\[\sum_i Z_i Y_i = Z_{CN} \]
Conserved Quantities

In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

- **Total Yield:** \[\sum_i Y_i = 2 \]
- **Total Charge:** \[\sum_i Z_i Y_i = Z_{CN} \]
- **Total Mass:** \[\sum_i A_i Y_i = A_{CN} - \bar{\nu} \]

Conserved Quantities

- In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

Total Yield:
\[\sum_{i} Y_i = 2 \]

Total Charge:
\[\sum_{i} Z_i Y_i = Z_{CN} \]

Total Mass:
\[\sum_{i} A_i Y_i = A_{CN} - \bar{\nu} \]

Charge Parity:
\[\sum_{i} Y_i(Z_1, A_i) = \sum_{i} Y_i(Z_{CN} - Z_1, A_i) \]

Conserved Quantities

- In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

\[
\sum_i Y_i = 2 \\
\sum_i Z_i Y_i = Z_{CN} \\
\sum_i A_i Y_i = A_{CN} - \bar{\nu}
\]

Charge Parity:

\[
\sum_i Y_i (Z_1, A_i) = \sum_i Y_i (Z_{CN} - Z_1, A_i)
\]

Mass Symmetry:

\[
\sum_{A_i > \frac{A_{CN} - \bar{\nu}}{2}} Y_i (A_i) = 1
\]

In order to obtain correlation, conserved quantities can be enforced upon a set of resampled fission yields [1]:

\[
\sum_i Y_i = 2
\]

\[
\sum_i Z_i Y_i = Z_{CN}
\]

\[
\sum_i A_i Y_i = A_{CN} - \bar{v}
\]

Charge Parity:

\[
\sum_i Y_i (A_i) = 1
\]

Mass Symmetry:

This relationship is only approximately conserved. It is debatable whether it is a valid condition. Nevertheless, it is exploited in order to help conserve the other 5 relationships.

FY Covariance Matrix Generation

- The way in which a set of fission yields are resampled can be structured to conserve these relationships:
 - 1) Randomly selected the “light” or “heavy” side of the fission product spectrum to resample.
 - 2) Randomly select (weighted by uncertainty) a product in each A chain, resample its yield about its evaluated uncertainty.
 - 3) Scale all other yields in that A chain by the same percent change.
• The way in which a set of fission yields are resampled can be structured to conserve these relationships:

• 1) Randomly selected the “light” or “heavy” side of the fission product spectrum to resample.

• 2) Randomly select (weighted by uncertainty) a product in each A chain, resample its yield about its evaluated uncertainty.

• 3) Scale all other yields in that A chain by the same percent change.

Step 3 is allowed if the Z distribution for a given A is Gaussian, which empirical data and the E&R evaluation supports [1].
FY Covariance Matrix Generation

- **4)** Normalize the resampled yields such that they sum to 1.
- **5)** Generate the fission yields on the complementary side of the fission product spectrum using the neutron multiplicity of the compound system.

\[
Y_{\text{frac}}(Z_{\text{CN}} - Z, A_{\text{CN}} - A - \nu) = P(\nu) \cdot Y(Z, A)
\]

\[
Y(Z_{\text{CN}} - Z, A_i) = \sum_{\nu} Y_{\text{frac}}(Z_{\text{CN}} - Z, A_i)
\]
FY Covariance Matrix Generation

4) Normalize the resampled yields such that they sum to 1.

5) Generate the fission yields on the complementary side of the fission product spectrum using the neutron multiplicity of the compound system.

\[Y_{frac}(Z_{CN} - Z, A_{CN} - A - \nu) = P(\nu) Y(Z, A) \]

\[Y(Z_{CN} - Z, A_i) = \sum_{\nu} Y_{frac}(Z_{CN} - Z, A_i) \]

By Step 5 we’ve ensured all of the conservation rules are met.
6) Repeat steps 1-5) N times. Select N such that statistical noise is minimized.

7) Calculate the resulting correlation matrix from the N trials.

Correlation matrix for independent fission yields of ^{235}U fast fission.
• The England and Rider evaluation does not make any mention of the neutron multiplicity distribution used for their evaluations.

• Thus we are left to assume a neutron multiplicity distribution that sufficiently matches the England and Rider evaluation.

Neutron Multiplicity for fast neutron induced fission of ^{235}U according to J.P. Lestone in LA-UR-05-0288.
FY Covariance Matrix Generation

- The England and Rider evaluation does not make any mention of the neutron multiplicity distribution used for their evaluations.
- Thus we are left to assume a neutron multiplicity distribution that sufficiently matches the England and Rider evaluation.

However, we know $P(\nu)$ has dependence on A and Z and energy, etc.

Neutron Multiplicity for fast neutron induced fission of ^{235}U according to J.P. Lestone in LA-UR-05-0288.
E&R Consistent $P(\nu, A)$ Data

- $P(\nu, A)$ can be fitted to the England and Rider evaluation in order to obtain the best degree of consistency.
- A truncated Gaussian is used to fit the shape of the $P(\nu)$ distribution for each A chain.
- Select $P(\nu, A)$ that minimizes χ^2 between evaluated yields and “recalculated yields”, $Y'(Z, A)$

$$Y'(Z, A) = \sum_{\nu} P(\nu, A) Y(Z_{CN} - Z, A_{CN} - A - \nu)$$
E&R Consistent $P(\nu, A)$ Data

Example:
Reproduction of evaluated yields to obtain $P(\nu, 135)$ for fast fission of ^{235}U.
E&R Consistent $P(\nu, A)$ Data

Example: Resampled yields for ^{132}Te:

Using simple $P(\nu)$ data

Using E&R consistent $P(\nu, A)$ data
• **Example:** 135Te

• Presented is the covariance between independent yields as function of Z and A and that of 135Te.

• The evaluated yield for 135Te is $2.47 \pm 0.57\%$
Expected Behavior

- **Features:**
- ^{135}Te is positively correlated with itself.
Expected Behavior

- **Features:**
- ^{135}Te is positively correlated with itself.
- Products along the A chain have positive correlation.
• **Features:**

• 135Te is positively correlated with itself.

• **Products along the A chain have positive correlation.**

 – This positive correlation is reflected along a complementary $A = 99$ chain.
Expected Behavior

- **Features:**
 - ^{135}Te is positively correlated with itself.
 - Products along the A chain have positive correlation.
 - This positive correlation is reflected along a complementary $A = 99$ chain.
 - Products along A chains that do not have complementary Z have negative correlation.
Conclusions

• A model-agnostic method for independent fission yield covariance matrix generation is being developed.

• This method has been successfully applied to all 61 compound systems in the England and Rider evaluation.

• The results demonstrate expected behavior and trends.

• Final results serve as an interim solution for independent fission yield covariance matrices until a new evaluation is completed.
 – The results are publicly available at nucleardata.berkeley.edu/FYCOM
 – A peer-reviewed publication on this method has been submitted to journal.
NSSC Experience

Acknowledgements

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.