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Neutron Imaging

• Complements X-ray 
imaging

• Nuclear interactions 
mean it can resolve 
isotopic differences

• Common shielding 
materials that are 
effective at attenuating X-
rays do not interact as 
readily with neutrons

Image credit: Seth McConchie, ORNL
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Associated Particle Imaging

• Method to improve signal to noise by filtering in time domain
• Three modes:

– Transmission imaging
– Scatter imaging
– Fission imaging

• ORNL Nuclear Materials Identification System (NMIS) uses 
deuterium-tritium generator to produce ⍺ (3.54 MeV) and neutron 
(14 MeV) in opposite directions 
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Example neutron radiograph with 2D pixelated
detector. Scale is the attenuation coefficient in the
material.
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Problem statement

In a fully portable, fielded version of NMIS, the neutron detector array could be 
misaligned relative to its nominal position. This affects both scatter rejection and 
image reconstruction.

Solution: design a neural network to infer the position of a neutron array (distance, 
offset, and rotation) from measurement data.

Simulated imaging phantom CT reconstruction of phantom 
with 7.5cm lateral array offset
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Approach

• Simulate neutron physics with Monte Carlo (MCNP)
• Use measured data to incorporate detector response

• Train neural network on generated data
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Monte Carlo (MCNP) Workspace

• No line of sight assumed between source 
and detector due to steel box

• Annulus materials selected from plastic, 
steel, aluminum, tungsten, DU, or explosive

• MCNP source distribution based on curves 
fit to measured data from generator à
separate “source” for each alpha pixel 
matching correlated emission cone

• Neutron pixels: PVT, 1” x 1” x 4” based on 
existing NMIS design

• Train / Test: 842 / 157 simulations X (cm)
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Accounting for detector timing response

• MCNP does not model 
light/charge collection in 
neutron/alpha detectors

• Timing is assigned using 
constant fraction 
discriminators (CFD)

• Measured 1000 pulses per 
channel and simulated 
CFD to find timing 
variability

• Created approximated 
distribution alpha times-> 
combined with MCNP 
simulations of alpha to 
blur measurements
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Important features in common:
ü Each blur represents one alpha detector in coincidence with 3-5 

neutron pixels
ü Intensity (number of counts) matches to within range defined by 

generator power
ü Length of blur matches detector response in time

Final Simulation

Measured data

Monte Carlo simulation

• MCNP gives the probability of a 
neutron scatter in pixel n at time t after 
source event given detection in alpha 
pixel a

• That probability is blurred/delayed 
based on detector timing response

• Probabilities converted into counts by 
binomial sampling based on generator 
output and time
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Neural network training

• First convolutional layer incorporates regions of pixels into intermediate 
representations (“features”)

• “ResNet” architecture employed for feature development
– Each block predicts residuals from previous block through “skip connections,” allowing for 

iterative function approximation

• Dropout used to promote orthogonality at feature layer
– During training each output value could be temporarily set to zeroà forces network to match 

neurons to features

• Network depth determined by training with single output layer:

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision 
and pattern recognition, 2016, pp. 770–778.

[2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from 
Overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014.

Depth Training time 
(s/500epoch)

Time to 
stability 
(epochs)

Loss
Parameters RMSE 

(test)Training Validation

101 21032 93 0.0009 0.023 43013633 1.34
50 3050 >500* 0.0062 0.023 2560000 1.35
10 2010 152 0.0226 0.051 547633 1.328
8 2103 100 0.0662 0.1638 1160433 2.108
6 2108 30 0.3989 0.4118 3724997 4.3767
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Results

Measurement 
time (s)

dX RMSE 
(cm)

dY RMSE 
(cm)

dθ RMSE 
(°)

600 0.4912 0.6479 0.6776
300 0.4904 0.6485 0.6774
120 0.4904 0.6485 0.6774
60 0.4904 0.6485 0.6774
30 0.4904 0.6485 0.6774

X error (cm) Y error (cm) θ error (°)
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Maximum errors corresponded 
to nearly complete obstruction 
of neutron pixels

RMSE: 0.49cm (X), 0.65cm (Y), 0.68° (θ)

Because they were trained using scaled 
data, network predictions are robust to 
measurement time/Poisson noise

Representative high-error prediction
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Reconstruction after algorithm

Before correction After correction

Outer diameter
(cm)

Inner diameter
(cm)

Object 17.2 13.2

Reconstruction 15.8 11.4

Error (%) 8.3 13.8

Actual object

dx 
(cm)

dy
(cm)

dθ
(°)

Actual offsets 12.2 -13.3 -1.46

Network output 11.5 -13.4 -1.69

Error (%) 5.7 0.8 16

Network Accuracy Dimension error after reconstruction
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Conclusions

• Neural networks are a good tool to recover array position 
information in NMIS system

• Accuracy is sufficient to allow tomographic image reconstruction
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Future work

• Incorporate uncertainty in neural network predictions: network 
should raise flag if prediction is low confidence.

• Sensitivity study for portable NMIS: is there a better 
configuration of number/size of detectors that provides better 
information?
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NSSC Experience Highlights

Hiking in Muir Woods following 2017 
UPR in Walnut Creek

Data Science Summer Institute 2019
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Categorical approximation for 
uncertainty
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[1] C. M. Bishop and others, Neural networks for pattern recognition. Oxford university press, 1995.

Neural networks* as classifiers converge to the Bayesian posterior distribution conditioned on the inputs as priors
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Network feature examination

• Primarily vertical lines of 
varying width

• Network learning to identify 
coincident neutron pixelsà
how many neutron pixels are 
in each alpha cone

• Suggests improvement 
possible by using narrower 
neutron pixels

Weights for first convolution layer. Vertical
white areas next to darker areas indicate
that these neurons respond to vertically
oriented edges
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Alpha channel timing distributions

A B

C D
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Pre-trained network weights

Training Validation
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New array design trade space

1inch pixels, 78° arc ½ inch pixels, 44° arc
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Analysis of residuals

A B

C D E


