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Motivation

• One of the goals of the NNSA is to “develop 
technologies to detect nuclear and radiological 
proliferation worldwide”.

• Wide spread use of novel dual-mode inorganic 
scintillators such as LiI:Eu and Cs2LiYCl6:Ce (CLYC) 
has been prevented by their high cost and low yields 
from current single crystal growth methods

• Transparent ceramic scintillators could provide a 
quicker and cheaper method of producing high 
performance scintillators in near net shapes
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Family of Li-containing Garnets

• Initially researched for solid state electrolytes for Li-ion 
batteries due to high Li-content and garnet structure 

• Among these, Li7-xLa3Zr2-xTaxO12 (LLTZx) garnets are 
promising for efficient dual mode ceramic detectors due to 
their:

– high Li content, 
– high density, 
– high effective Z,
– isotropic optical properties.
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A Process for the Synthesis of 
Transparent Ceramics

• A general process for synthesizing transparent 
ceramics

• Several challenges include:
– Secondary phases from volatilization of Li during high 

temperature stages
– Intragranular pores from imbalance of grain growth 

and pore removal 
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Compound Synthesis via Sol-gel 
Process

• A flexible alkoxide sol-gel 
process developed with 
LANL for the synthesis of 
Li5La3Ta2O12 (LLT)

• Solubility of Li-
intermediates necessitates 
solvent evaporation 

• Li-volatility at high 
temperatures requires 
compensation by inclusion 
of excess Li-acetate

• Substitution of Ta-ethoxide 
for Zr-isopropoxide for 
LLTZx
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Establishing Boundary Conditions for 
Thermal Processing

Simultaneous DSC/TGA of 
dried sol-gel cake to better 
understand transformation to 
crystallized oxide
• 20°C- 200°C

– Removal of residual water and 
volatile organics

• 200°C- 600°C
– Decomposition of oxalates and acetates to 

carbonates/oxycarbonates 

• 600°C and up
– Decomposition of carbonates/oxycarbonates, 

crystallization and glass transition related to 
reconfiguration
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Establishing Boundary Conditions for 
Thermal Processing (Continued)

Equilibrium High Temperature X-
Ray Diffraction of dried sol-gel 
cake
• 20°C- 200°C

– Low angle peaks likely from 
residual organics 

• 200°C- 600°C
– Low intensity peaks around 30° are 

likely from 
carbonates/oxycarbonates

• 600°C and up
– LiLa2TaO6 phase first appears, 

then transitions into Li5La3Ta2O12
which then begins to break down 
from Li-volatilization 
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Study of Li-volatility During Initial 
Consolidation

Li-volatility during crystallizing and initial 
consolidation necessitates excess Li to 
compensate
• 3 batches of powder were made with varying 

amounts of excess Li following the same sol-gel 
procedure

• 1 batch was made with excess La

Sample Wt% Excess Li Excess La

LLT10 10 No
LLT13 12.5 No
LLT14 12.5 1 Wt%
LLT11 15 No
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Particle Size Distribution and Powder 
Morphology

Particle size distribution was 
analyzed for each batch of 
powder using Dynamic Light 
Scattering (DLS) and Scanning 
Electron Microscopy (SEM)
• Uniform size distribution of 

each of the powder batches 
with similar mean size

• Observation using SEM 
shows sintering of particles 
during crystallization 
resulting in larger 
agglomerates.
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Initial Consolidation by Uni-axial Hot 
Pressing

• ~4.5 g green bodies at 182 MPa in a 12 mm diameter stainless 
steel die

• Green bodies are then loaded into a 12 mm diameter grafoil-
lined graphite die and hot pressed at 1200 °C and 80 MPa for 1 
hr under vacuum or flowing Ar. 

Sample Wt% 
Excess 

Li

Excess 
La

Hot 
Pressing 

Atmosphere

Density [g/cm3] Secondary Phases

LLT10Ar 10 No Ar 6.17 (97.5% TD) LiTaO3, Li7La3Ta2O13

LLT10Vac 10 No Vacuum 6.18 (97.6% TD) LiTaO3, Li7La3Ta2O13

LLT13Ar 12.5 No Ar 6.28 (99.2% TD) LiTaO3, Li7La3Ta2O13

LLT13Vac 12.5 No Vacuum 6.32 (99.8% TD) LiTaO3, Li7La3Ta2O13

LLT14Vac 12.5 1 Wt% Vacuum 6.15 (97.2% TD) Li7La3Ta2O13

LLT11Ar 15 No Ar 6.12 (96.7% TD) Li7La3Ta2O13

LLT11Vac 15 No Vacuum 6.20 (97.9% TD) Li7La3Ta2O13
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Secondary Phase Formation and the 
Effect of Excess Li

X-Ray Diffraction of hot pressed 
samples show near single phase 
ceramics.
• Low intensity peak at ~23°

from LiTaO3 secondary phase
• Garnet peaks show low angle 

asymmetry from formation of 
Li-stuffed Li7La3Ta2O13 garnet 
phase

• Rietveld refinements using 
GSAS II resulted in poor fits 
from asymmetry of garnet 
peaks
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Complex Emission Profile of Hot 
Pressed LLT ceramics

Broad X-Ray excited 
radioluminescence and 
photoluminescence emission 
from self-trapped exciton 
tantalate intrinsic emission
• Multiple line emissions 

above 480 nm likely from a 
4f-4f transition in some rare-
earth impurity.

• In-line transmission spectra 
show a degree of 
transparency in the area of 
emission
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Future Plans

• Hot isostatic pressing of consolidated 
ceramics

• Expand sol-gel process to include Zr
• Investigate activation by Ce3+ and Pr3+

using the sol-gel process
• Investigate pulse shape and pulse height 

discrimination techniques for neutron-
gamma discrimination
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NSSC Experience

• LANL School of Nukes 2018
– Non-destructive assay short 

course 

• NSSC-LANL Keepin Non-
proliferation Summer Program 
2018
– Resulted in a continued 

collaboration on the synthesis of 
nano-powders and transparent 
ceramics with Dr. Chen (LANL) 

• GW Bootcamp on Nuclear 
Security Policy 2019
– An in-depth introduction to 

Nuclear Security policy and job 
opportunities 

• Several Conferences and 
Presentation Opportunities
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