

Nuclear Science and Security Consortium Virtual Scholar Showcase 2020

Validation of an Indirect Method for Constraining Neutron-Capture Cross Sections

June 2, 2020

Katherine Childers Michigan State University

June 2 - 3, 2020

Introduction

Graduate Student

Department of Chemistry, Michigan State University

National Superconducting Cyclotron Laboratory

Lab Mentor: Aaron Couture P-27: Nuclear Astrophysics and Structure

Focus Area: Nuclear and Particle Physics

Crosscutting Area: Nuclear Data

Application and Measurement of (n,γ) Cross Sections

Neutron-capture cross sections are valuable for various nuclear data applications.

- Nuclear energy
- Reaction networks and astrophysics
- Non-proliferation

Artist rendering of neutron star merger from NASA website

Direct measurement on short-lived nuclei are challenging

- Radioactive targets or neutron targets are not feasible
- Many cross-sections are not well known

Indirect technique

- Statistical model Hauser-Feshbach
- Use theoretically calculated nuclear properties to determine cross sections

Uncertainties of nuclear properties

- Many theoretical models to choose from
- Large range of possible cross sections introduces a large uncertainty

Liddick et. al., PRL 116, 242502 (2016).

Experimentally constraining inputs with βdecay

• Measure γ -decay – β -Oslo Method

- Need individual γ -ray energy and total excitation energy of nucleus

- Extract nuclear level density (NLD) and γ -ray strength function (γ SF)

- Extracted NLD and γSF inserted into statistical reaction model to constrain cross section
- Need a high efficiency detector

- ⁸⁶Kr primary beam 140 MeV/u
- ⁹Be target
- ⁸³As secondary beam

K1200 Cyclotron

β-Oslo Method

Nuclear Level Density Normalization

Reduction of Level Density

S. Goriely, F. Tondeur, and J. Pearson, Atomic Data and Nuclear Data Tables 77, 311 (2001).

γ-ray Strength Function Normalization

TALYS calculation

Direct Measurements at LANSCE

Neutron Energy vs. Total Energy

Subtraction of Contaminants

Yield of neutron capture on ⁸²Se

- β-Oslo method needs to be validated against a directly measured neutron capture cross section
- The NLD and γ SF have been constrained for ⁸³Se using the β -Oslo method
- The neutron capture cross section of ${}^{82}Se(n,\gamma){}^{83}Se$ has been calculated using the constrained NLD and γSF
- Analysis of directly measured cross section with DANCE is ongoing

Collaborators

UNIVERSITY OF OSLO

A.C. Larsen, M. Guttormsen, L.C. Campo, T. Renstrom, S. Siem

> Lawrence Livermore National Laboratory

> > D.L. Bleuel

CENTRAL MICHIGAN UNIVERSITY

G. Perdikakis

S.N. Liddick, B.P. Crider, R. Lewis, S. Lyons, A. Spyrou, A.C. Dombos, F. Naqvi, A. Richard

A. Couture, S. Mosby, C.J. Prokop, J. Ullmann, C. Fry

S. Quinn

NSSC Experience

 PNNL Radiation Detection for Nuclear Security Summer School, June 2019

Many trips out to Los Alamos National Laboratory!

- Nuclear Science and Security Consortium Fall Workshop and Advisory Board Meeting, October 2019
 - APS Division of Nuclear Physics Fall Meeting, October 2019

19

Acknowledgements

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

SuN - Total Absorption Spectrometer

- High efficiency, lower resolution
 - Resolution at 1 MeV 6%
 - Efficiency at 1 MeV 85%
- Segments give individual γ-ray energies
- Summing of all γ-rays give initial excitation energy

Simon, A., et al. NIM A 703 (2013): 16-21

Validation of the β -Oslo Method

 β-Oslo method has already been used to constrain the neutron capture cross section of ⁷⁵Ge, ⁶⁸Ni, ⁶⁹Ni, ⁷³Zn, and ⁵⁰Ti

- 1. Target nucleus must be able to be produced by neutron capture and β -decay
- 2. β -decay parent must have Q_{β} -large enough to populate high energies
- 3. Ability to produce parent nucleus and study its β -decay

⁸² Br	⁸³ Br	⁸⁴ Br	⁸⁵ Br
35.282 H	2.40 H	31.76 M	2.90 M
β-: 100%	β-: 100%	β-: 100%	β-: 100%
⁸¹ Se	⁸² Se	⁸³ Se	⁸⁴ Se
18.45 M	STABLE	22.3 M	3.26 M
β-: 100%	n	β-: 100%	β-: 100%
⁸⁰ As	⁸¹ As	⁸² As	⁸³ As
15.2 S	33.3 S	19.1 S	13.4 S
β -: 100%	β-: 100%	β-: 100%	β-: 100%

Liddick *et al.* (accepted). Spyrou *et al.* PRL **113**, 232502 (2014). Spyrou *et al.* J. Phys. G: Nucl. Part. Phys. **44** 044002 (2017). Liddick *et al.* PRL **116**, 242502 (2016). Lewis *et al.* PRC **99**, 34601 (2019).