Radiation Hardness Characterization of LKH-5 Scintillating Glass

June 3, 2020

Mairead Montague
University of Tennessee, Knoxville
Introduction

- **Academic Advisor:** Jason Hayward
 - Department of Nuclear Engineering

- **Lab Mentor:** Paul Hausladen
 - Radiation Detection and Imaging

Radiation Detection and Instrumentation

- Glass Scintillator Characterization for High Energy Cargo Scanning
- Fast Neutron Tomography for Spent Nuclear Fuel Verification
Cargo Scanning for Non-Proliferation

- **High Energy X-Ray Radiography**
 - Linear accelerator to image cargo containers
 - Search for SNM through detection of signatures of photonuclear reactions
 - Use both scintillator detectors and neutron detectors

- **Radiation Hardness**
 - Radiation damage: decrease light transmission by ionizing electrons within the scintillator and creating myriad defects within the crystal
 - Scanning system lifetime is dependent on scintillator lifetime
 - Scintillator lifetime dependent on radiation resistance
 - Important in order to make associated systems field-ready

Quantifying a scintillator’s reductions in light transmission after irradiation results in information on its expected lifetime and therefore the expected lifetime of the scanning system.

[1]
Scintillator Detectors for Cargo Scanning

Cadmium Tungstate
- High density,
- High spatial resolution,
- No afterglow
- Difficult to manufacture, Performance variability, Expensive

Cesium Iodide
- High optical yield
- Hygroscopic, Visible afterglow

LKH-5 Glass
- Low manufacturing cost; Well coupled with conventional a-Si TFT array sensitivity
- Radiation hardness must be investigated

2. M. Kobayashi et. al “Cadmium Tungstate Scintillators with Excellent Radiation Hardness and Low Background,” NIMA 1994
Transmission Measurements

- **36 Samples: 10 mm x 10 mm x 20 mm**
 - All 6 sides polished
 - All close in starting color
 - Minimal aberrations from glass pouring

- **Transmission Measurements**
 - Spectrophotometer with wavelengths from 800 nm to 200 nm
 - Baseline 100% transmission with an unobstructed beam
 - Relative transmission with the sample in the beam path
 - Baseline 0% transmission with completely obstructed beam
Experimental Procedure

- **Irradiation**
 - 9MV Linear Accelerator
 - Doses from 11 kRad–5 MRad
 - Dose Rate at 150 mm: 133.3 kRad/min
 - Placed 150 mm from target with the 10 mm x 10 mm face centered in the beam path

- **Activation**
 - Some activation seen after irradiation
 - Geant4 simulation to determine source of activation
 - Most likely: Neutron capture with 161Gd (t1/2 = 3.66 min)

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Actual time (s)</th>
<th>Dose (krads)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2, 3</td>
<td>5</td>
<td>11.1</td>
</tr>
<tr>
<td>4, 5, 6</td>
<td>23</td>
<td>51.1</td>
</tr>
<tr>
<td>7, 8, 9</td>
<td>45</td>
<td>100.0</td>
</tr>
<tr>
<td>10, 11, 12</td>
<td>123</td>
<td>273.3</td>
</tr>
<tr>
<td>13, 14, 15</td>
<td>225</td>
<td>500.0</td>
</tr>
<tr>
<td>16, 17, 18</td>
<td>338</td>
<td>751.1</td>
</tr>
<tr>
<td>19, 20, 21</td>
<td>450</td>
<td>1000.0</td>
</tr>
<tr>
<td>22, 23, 24</td>
<td>900</td>
<td>2000.0</td>
</tr>
<tr>
<td>25, 26, 27</td>
<td>1350</td>
<td>3000.0</td>
</tr>
<tr>
<td>28, 29, 30</td>
<td>1800</td>
<td>4000.0</td>
</tr>
<tr>
<td>31, 32, 33</td>
<td>2250</td>
<td>5000.0</td>
</tr>
<tr>
<td>34, 35, 36</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Sample glowing brightly within the beam path
Annealing Process

- **Annealing**
 - 12 samples annealed
 - 1 sample from each of the dose levels
 - Manufacturer recommended annealing method
 - Heat furnace to 585°C at a rate of 10°C per minute ~1hr
 - Hold at 585°C ~30 minutes.
 - Lower temperature to 550°C at a rate of 1°C per minute ~35 min
 - Lower temperature to 450°C at a rate of 2°C per minute ~50 min
 - Lowers to room temperature at a maximum rate of 11°C per minute ~40 min

Before Irradiation | After Irradiation | After Annealing
Irradiation and Annealing Results

400 nm Data
27% change in transmission at 5Mrad
Demonstrates annealing process

550 nm Data
Less than 3% change in transmission
Demonstrates radiation hardness
LKH-5 Comparison to Conventional Scintillators

LKH-5 Pros

- Low Cost
- Potential use in conventional a-Si TFT arrays
- Comparable signal-to-noise to CWO through many inches of steel with increasing glass thickness

LKH-5 Drawbacks

- Modest light yield
- Moderate density

Radiation Hardness

- LKH-5 comparable to CWO at their respective emission peaks and 5 MRad of dose
- LKH-5 better than CsI(Tl) at 4.2 MRad of dose at 550 nm

<table>
<thead>
<tr>
<th>Scintillator Property</th>
<th>CdWO</th>
<th>CsI(Tl)</th>
<th>LKH-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>7.9</td>
<td>4.5</td>
<td>3.8</td>
</tr>
<tr>
<td>Optical Yield (photons/MeV)</td>
<td>15,000</td>
<td>54,000</td>
<td>4,000</td>
</tr>
<tr>
<td>Cost ($/cm3)</td>
<td>$35</td>
<td>$9</td>
<td>~$1</td>
</tr>
<tr>
<td>Emission Peak (nm)</td>
<td>470</td>
<td>550</td>
<td>550</td>
</tr>
<tr>
<td>Rad Hardness Discrepancy</td>
<td>2%</td>
<td>19%</td>
<td>3%</td>
</tr>
</tbody>
</table>

2. M. Kobayashi et. al “Cadmium Tungstate Scintillators with Excellent Radiation Hardness and Low Background,” NIMA 1994
Conclusion

- Light transmission at the emission peak decreases by 3% at 5 MRad of dose
 - Indicates that radiation will have little effect on scintillator performance
 - Indicates long scintillator lifetime, which could lead to long cargo scanning system lifetime and low replacement detector costs
 - Glass annealing improves transmission and this process can prolong scintillator lifetimes

- Appealing alternative if a detector design based upon LKH-5 glass can be consistently engineered to yield similar performance
 - Comparable radiation hardness to CWO and low cost
 - Same emission peak as CsI(Tl) and lower cost

- A journal paper on this work is currently under review, and plans for transition to commercial production by Varex Imaging are in progress
Fast Neutron Tomography for Spent Fuel Verification

- Modified parallel slit collimator for 3D imaging
- Used to verify spent fuel quantities and composition

Collimator annulus
(a) inner stainless steel
(b) outer borated polyethylene ring
(c) 96 slits - define lines of response across the field of view.
Neutron detection
(d) 12 detector modules - 24 rows of 8 boron straws each
(e) 5-cm-thick ring of borated polyethylene shielding
NSSC Experience

- **2017:** NSSC Undergrad Affiliate
- **5/2018:** B.S. Nuclear Eng, UC Berkeley
- **6/2018:** ORAU Summer Fellowship
- **5/2019:** ORNL Research
- **12/2019:** M.S. Nuclear Eng, UTK
- **5/2019:** NSSC Fellow
- **6/2018:** Nuclear and Particle Physics • 2017-2018
- **Radiation Detection and Instrumentation • 2019-2020**
This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0003180.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

