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Relevance to the NNSA Mission

• Microscopic particles are released during processing, transport, 
and burnup of nuclear materials1

• Can be analyzed for age, chemical form, and enrichment2

• Certified reference materials (CRMs) of actinide nanomaterials: 
needed as controls for forensic assignments3,4

• Developing synthetic routes to nanostructured CRMs:
• Composition and morphology can be controlled with a detailed 

understanding of chemical bonding

1. Mayer, K.; Wallenius, M.; Fanghänel, T. J. Alloys Compd. 2007, 444–445, 50.
2. Moody, K. J.; Hutcheon, I. D.; Grant, P. M. Nuclear Forensic Analysis, Second Ed.; CRC Press, 2014.
3. Mathew, K. J.; Stanley, F. E.; Thomas, M. R. et. al. Anal. Methods 2016, 8 (40), 7289.
4. Inn, K. G. W.; Johnson, C. M.; Oldham, W. J. et. al. J. Radioanal. Nucl. Chem. 2013, 296 (1), 5.
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• Goal: develop methods to access new uranium nanomaterials

• Many accessible compositions of UxOy
– Controlling structure is challenging
– Phase-pure nanomaterials are rare

Project Overview

Spino, J.; Santa Cruz, H.; Jovani-Abril, R.; Birtcher, R.; Ferrero, C. J. Nucl. Mater., 2012, 422, 27.
Sajanlal, P. R.; Sreeprasad, T. S.; Samal, A. K.; Pradeep, T. Nano Rev., 2011, 2, 5883.
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• Chemical vapor deposition (CVD) from uranium precursors:

• Solution synthesis of UO2 nanoparticles (NPs):

Uranium oxide nanomaterials: precedent

Mixed UO3/U3O8 films

1.   Shiokawa, Y.; Amano, R.; et. al. J. Radioanal. Nucl. Chem., 1991, 152, 373.
2. Wu, H.; Yang, Y.; Cao, C. J. Am. Chem. Soc. 2006, 128, 16522.

3-6 nm UO2 NPs
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Routes to oxide nanomaterials
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• Synthesizing new uranium nanomaterials:

– Tunable precursors
– Well-defined decomposition
– Nucleation and growth control
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Requirements for molecular precursors

• Decompose to form uranium oxide
– Single pathway ideal

• Volatile (gas-phase methods) or soluble (solution methods)

Lim, B., Rahtu, A., Park, J., Gordon, R. Inorg. Chem. 2003, 42, 7951.
Lee, A.; Schafer, L. Eur. J. Inorg. Chem., 2007, 16, 2245.
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Amidate ligand overview

• Metal oxide precursors

• Highly tunable

• Thermal properties can be controlled by changing R1 and R2
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Synthesis of uranium amidate 
precursors

• Goal: new molecular precursors for UO2 nanomaterials

• Characterized using nuclear magnetic resonance (NMR) spectroscopy 
and x-ray crystallography

light green crystals
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Volatile uranium amidates 

• Bis(alkyl)-substituted amidates may offer higher volatility 
– Advantageous for CVD precursors

• Significantly more volatile

emerald green crystals
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• Proposed mechanism:

– 1. Alkene elimination
– 2. Protonolysis
– 3. Nitrile elimination

U(amidate)4 decomposition

11
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U(amidate)4 decomposition
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• Proposed mechanism:

– 1. Alkene elimination
– 2. Protonolysis
– 3. Nitrile elimination
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U(ITA)4 decomposition
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Collaboration for uranium oxide CVD

• Established a collaboration with Dr. Sanjay Mathur at the University 
of Cologne for chemical vapor deposition (CVD) of UO2 films

• Shipped precursors to Cologne, worked together to design 
deposition experiments

14Straub, M. D.; Leduc, J.; Mathur, S. and coworkers. Angew. Chem. Int. Ed., 2019, 58, 5749.
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CVD of UO2 from amidate precursor

– Precursor temp: 160 oC
– Si substrate temp: 500 oC
– Pressure: 7.5 x 10-7 torr

15

U(ITA)4

With Dr. Sanjay Mathur and coworkers
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SEM: top view
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• Custom precursor design → new UO2 nanostructures!

With Dr. Sanjay Mathur and coworkers
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SEM: side view
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• Custom precursor design → new UO2 nanostructures!

With Dr. Sanjay Mathur and coworkers
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• Preferred growth along {111} planes

Powder x-ray diffraction (PXRD)

18With Dr. Sanjay Mathur and coworkers



19

• What other high surface area UO2 nanomaterials can we access 
using a molecular precursor approach?

X-ray photoelectron spectroscopy (XPS)

19With Dr. Sanjay Mathur and coworkers
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Templated actinide dioxide particles

• Ultra-small (< 3 nm) actinide dioxide (AnO2) particles can be released 
during burnup and reprocessing of nuclear fuels1

• Models for these AnO2 NPs are difficult to isolate
– Aggregation is common at small sizes

• Solution: use a template to control particle size!

201.  Moody, K. J.; Hutcheon, I. D.; Grant, P. M. Nuclear Forensic Analysis, Second Ed.; CRC Press, 2014.

Precursor loading
and decomposition



21
21

10-4 torr
(static vacuum)

2 d

An = U, Th

Formation of an inclusion compound

• COF-5 absorbs up to 50 wt% An(hfa)4

• Molecular precursors can be loaded into a porous framework, then 
decomposed in situ to AnO2 NPs
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AnO2@COF-5 nanoparticle synthesis

• AnO2 particles confined to the pore size of the COF
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Mechanistic control of products

• Hydrolysis of An(hfa)4@COF-5 with water vapor gives AnO2:

• Pyrolysis instead gives AnF4 via fluoride abstraction:

23
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Conclusions

• Custom molecular precursors → new actinide materials!

– UO2 thin films (2-D)
– UO2 nanotrees (3-D)
– Templated UO2 and ThO2 nanoparticles (0-D)

• These methods could be used to produce nanostructured UO2
CRMs with any desired 238U/235U ratio



26

NSSC-LANL Keepin Nonproliferation Summer Program (2017)

NSSC experience

• Mentors: Jackie Kiplinger and Julianna Fessenden
• Project: review article on modern pre- and post-detonation nuclear forensics

Radiochemistry and Nuclear Forensics Course (TA)

• Hands-on lab course introducing students to radiochemical methods
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Beyond the PhD

• Seeking job opportunities at national labs!

– Graduating this year

• Interests:

– Inorganic chemistry and materials science
– Nuclear energy and waste
– Renewable energy technologies
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