Development of a pixelated BaF₂ test bed for timing applications

Tyler A. Jordan*,† (tyjordan@lanl.gov), Madison T. Andrews†, Edward A. McKigney†, Kai Vetter*

*Department of Nuclear Engineering, UC Berkeley; †XCP-7, Los Alamos National Laboratory

This material is based upon work supported in part by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003996.

Consortium
Nuclear Science & Security

Time-of-flight positron emission tomography (TOF-PET)

- Conventional PET uses timing information only to establish a line of response (LOR)
- TOF-PET uses TOF to localize the annihilation position along the LOR
- Improves signal to noise ratio
- 10 ps FWHM coincident time resolution enables direct source localization instead of reconstruction from multiple LOR

![Figure 1. Relationship between relative annihilation photon TOF and annihilation position along the line of response [1].](image1)

Conventional PET

TOF-PET

Figure 3. (Top) Conventional PET: each event is equally attributed to all image elements along the LOR. (Bottom) TOF-PET: each event is attributed only to those image elements along the LOR that are compatible with the relative annihilation photon TOF [2].

BaF₂ for sub-nanosecond timing

- Pure BaF₂ crystal exhibits two scintillation mechanisms with distinct emission characteristics
 - Self-trapped exciton luminescence: slow emission peaked at 310 nm, 600 ns decay
 - Cross luminescence: fast emission peaked at 195 nm & 220 nm, sub-nanosecond decay

![Figure 1. (Top) Schematic of BaF₂ band structure and two scintillation mechanisms [3]. (Bottom Center) Time resolved BaF₂ emission spectrum [4]. (Bottom Left) Time distribution of fast emission [4]. (Bottom Right) Time distribution of slow emission [4].](image2)

Detector design

Goal: to develop a pixelated BaF₂ test bed to characterize the performance of various configurations for timing applications.

- Timing applications are characterized by high time resolution and/or count rate
- High count rates require slow component suppression
- Primary design motivation: time-of-flight positron emission tomography (TOF-PET)
- Deployable form factor
- Variable system geometry

![Figure 4. A stack of acetal sheets forms the frame for an 8x8 array of 4.5 mm x 4.5 mm x 30 mm pure BaF₂ crystals. Each pixel slot has rounded corners which enforce an airgap around the pixel; the top of the array reflects the color of the surface it sits on.](image3)

![Figure 5. The BaF₂ array is air coupled to an 8x8 Photonis Planacon MCP-PMT (35 ps transit time spread).](image4)

![Figure 6. Four detectors have been assembled and tested under x-ray (> 500 keV) excitation.](image5)

Next steps

1. TOF-PET system performance
 - Custom brackets to mount detectors to ring stands, already in hand
 - TDC for timing, waveform digitizer for spectroscopy
 - Rather than using anode signals for timing, pick off signal from HV divider

![Figure 7. Proposed PET-like experimental setup [1].](image6)

2. Optical filter characterization
 - Slow emission component suppression via optical filtering makes high count rate applications viable by avoiding pile up
 - Interference filter transmission is angle-of-incidence dependent, so long wavelength transmission cutoff must be optimized for fast emission collection
 - Simultaneous collection of filtered and unfiltered light enables absolute pulse shape comparison for filter performance assessment
 - Feasibility study for filtered spectroscopy

![Figure 8. (Top) 1" x 1" cylindrical pure BaF₂ crystal. (Top Right) Omega 227 SP optical filter. (Bottom) Proposed dual PMT readout for filtered pulse shape characterization.](image7)

References