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At Lawrence Livermore National Laboratory we are

SiPM Characterization with Argon Light

VUV-sensitive Hamamatsu SiPMs were deployed in

developing a liquid argon detector system (CHILLAX), = e The CHILLAX detector is capable of stably housing 1 L of liquid argon with +0.5 CHILLAX and characterized with liquid argon light.
which can operate stably at a high xenon doping rate. S ﬁ,, K and +0.001 bar stability. Xenon has been doped in the argon at concentrations (arXiv:2202.02977) wp
2 G\ as high as 4%. SiPM modules immersed in the liquid allow us to monitor how

Confirmation of SiPM

capability to directly m———p

observe argon

CHILLAX is designed to house 1 L of liquid argon and has
deployed VUV-sensitive silicon photomultipliers (SiPMs)

scintillation light changes in response to the xenon concentration.

which can directly detect argon scintillation light with
appreciable photon detection efficiency. Design Approach scintillation light!
. . . Gas< 50 T . .
We have installed instruments for precision measurements " pom e l Quartz window blocks VUV light.
of xenon in the argon gas and liquid as well as a camera to g — N Winwis 5157
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851 8 | 1o 2 A 3-channel SiPM cell agree with literature.
Motivation and Challenaes | | Detector design is optimized to | | is deployed in the
9 CHILLAX condensation stand with mitigate xenon distillation and A gas panel handles circulation of  getector to observe

Current Challenge: Xenon Ice

i tili 3 vacuum jacket removed. Argon is freezing. noble gas through a purifier, as intillation light Problem: Xenon Icin "~
Argop IS utlllze.d at a multi-ton sca!e for dark matter and continuously circulated through a g well as contains a xenon injection argon scintillation lignt. d .
neutrino experiments (e.g., DarkSide20k, DUNE). thermosiphon. and mixing scheme. |
However, it has undesired features, including its long Xenqn ICE forms above
scintillation lifetime (limits timing resolution), shorter Quantifying Xenon Concentration in CHILLAX the liquid level on detector

walls at ~0.2% despite

. . doping levels far below Y
Measuring Xenon in Argon Gas the xenon solubility limit

(~7% at 2 bar).

scintillation wavelength (photosensors typically perform
better at longer wavelengths), and a higher ionization

energy (fewer excitations per drift electron in a TPC). Measuring Xenon in Liquid Argon

Cryogenic capacitors are tis likely that liquid argon g R 4

Property | Gas Gas Liquid phase |Kinetic deployed in the bottom of the An RGA samples gas travels ub walls b -
scintillation |scintillation |ionization match to detector to monitor xenon from C?H”—LAX to cabillar Z‘Ction y Xenon ice forms a “rime” around the
wavelength | lifetime energy light concentration in the liquid. quantify xenon p yt d | can wall. Camera built by R. Smith.

particles concentration. SR s AN Solution: Cooling Detector Flange

A T = T NEETIL They operate by detecting behind xenon residue. : g ge

rgon nm ~ 3.2 Us e = 30. _ — ‘ .
Xenon 178 nm ~22 ns 12.13eV A=131.29 changes in the dielectric RGA s capable of If argon sweat can trickle down

measuring xenon gas

constants of liquid argon (1.505)

the can wall, xenon ice may be
and xenon (1.85).

concentrations at the . .
dissolved. A copper piece

Argon could benefit from making its light more Capacitor before O(1 ppm) level!
« Ly T - : : . A thermally connects the condenser
xenon-like”. This could be achieved by doping argon with Capacitors boast 1 fE sensitivit deployment in detector.
xenon at the O(1%) level P o o % e to the top of the detector flange,
| equwaler'\t 10 [0.05%,0.1%)] levels RGA Cart built by IR which did not cause argon sweat
of xenon! E. Mizrachi. but dramatically slowed xenon ice
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Unwanted Distillation Ty AT e = | I I The CHILLAX detector is investigating the challenges of
Xenon prefers to dwell in liquid over gas. = e T S . doping xenon in fiquid argon while developing tools to
ol A B Ml el L R e e 0 Time (s) precisely quantify the whereabouts of xenon in the system.
Freezin.g | o Capacitance change from dielectric change of xenon gas Xe-129:Ar-40 ratio drifts on the order of g/!eanl\/vhl:]e, the d_ete%%r\?as Sgwedsgéha/ll te_St Stl.anC_IC;to
Xenon is easily frozen in liquid argon temperatures. to vacuum (Ae = 0.0015). 0(0.1 ppm) over a 15-minute time scale IreF:ty C araC’Ferlz.e . -sensm.vel IPMs in aliquid argon
environment with liquid argon scintillation light.
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