

Benzotriazolium Metallate for ⁹⁹Tc Immobilization and Remediation

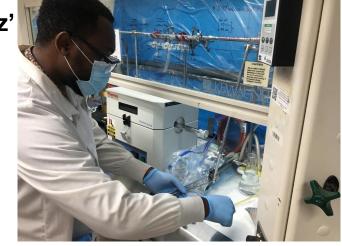
James Louis-Jean University of Nevada Las Vegas Affiliated Lab: Los Alamos National Laboratory

NSSC3 Kickoff Meeting and Advisory Board Review April 19-20, 2022

Introduction

<u>Department and University</u>: Chemistry, Radiochemistry Program, University of Nevada Las Vegas

Academic Advisor: Dr. Frederic Poineau


NSSC Research Focus Areas: Materials science

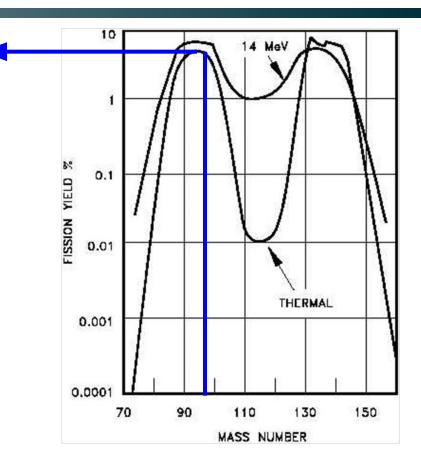
Planned Graduation Date: Summer 2022

Lab Mentor and Partner Laboratory: Dr. Jeremy 'Jez' Inglis, LANL

<u>Mission Relevance of Research</u>: Supports the development of nuclear technology; trains and develops nuclear experts; characterizes nuclear materials

1. Introduction

- **1.1. Nuclear fuel cycle**
- **1.2. Technetium behavior**
- 2. Experimental methods
 - 2.1. Benzotriazole
 - **2.2. Precipitation of [MO₄]⁻**
- 3. Results and Discussion
 - **3.1. Structural characterization**
 - **3.2 Spectral and thermal studies**
- 4. Summary
 - 4.1. Future work

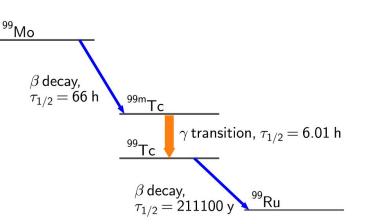

Formation of ⁹⁹Tc

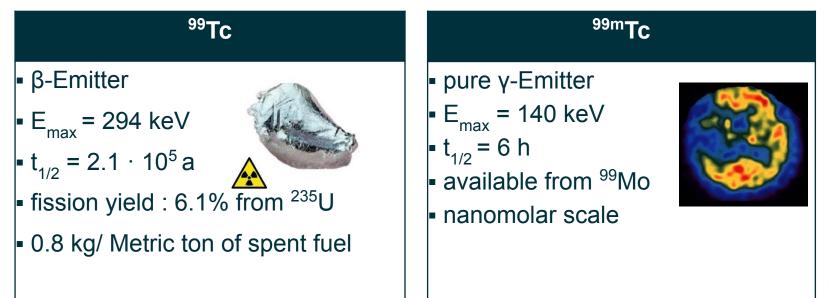
⁹⁹T

С

- Nuclear fuel cycle of U/Pu
 - Fission of ²³⁵U/²³⁹Pu
 - Fission products
 - A = 99 isobar (⁹⁹Tc)
- Spent nuclear fuel
 - ⁹⁹Tc dominant specie
 - Alloyed with Mo–Ru–Pd–Rh
 - ⁹⁹Tc metallic

- One ton (MT) of spent fuel contains 0.8 kg of ⁹⁹Tc
 - 2 tons of ⁹⁹Tc/year from nuclear industry

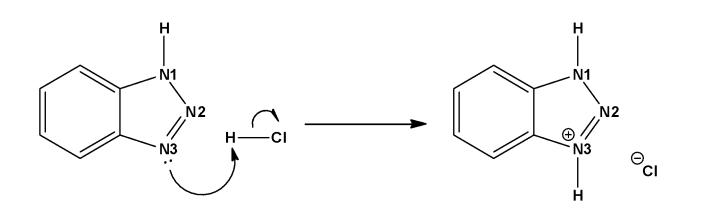



- Nuclear fuel reprocessing
 - Dissolution of spent fuel in nitric acid
 - Extraction of U along with Tc
 - Nitrato-pertechnetato-TBP complex of UO₂²⁺
 - $[UO_2(NO_3)_2 \cdot 2TBP]_{(org)} + [TcO_4]_{(aq)} [UO_2(NO_3)(TcO_4) \cdot 2TBP]_{(org)} + NO_3^{-}_{(aq)}$
 - Enrichment of U
 - Conversion of UO₂ to UF₆
 - Extracted Tc converted to TcF₆
 - In 35 tons of recovered U
 - 0.14 kg of Tc returns to the fuel
 - 30 kg of Tc enters high level waste

Occurrence of ⁹⁹Tc

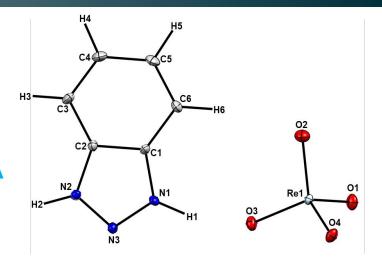
- Environmental occurrence
 - Nuclear industry
 - Hanford site tanks
 - 1310 ± 220 Kg (⁹⁹Tc)
 - Radiopharmaceutical
 - Imaging agent (^{99m}Tc)

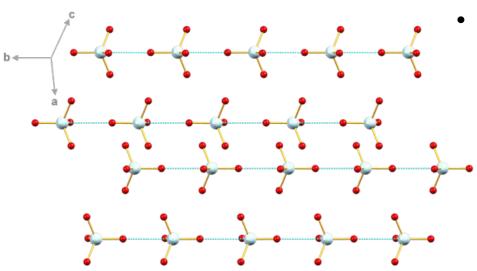
- Problems
 - High mobility [⁹⁹TcO₄]⁻
 - Migration to geological environment
 - Highly soluble under oxidizing conditions
 - Hanford tanks


GOAL

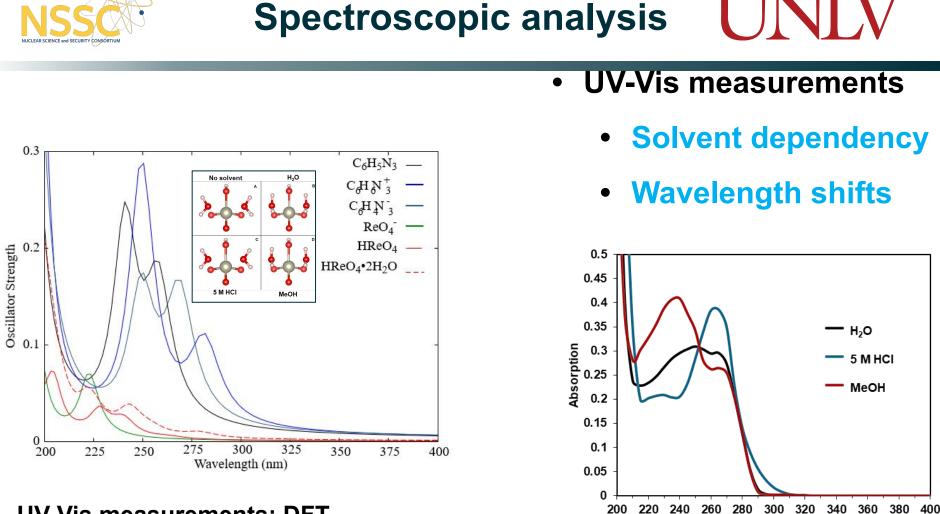
Immobilize [⁹⁹TcO₄]⁻ anions and propose avenue for nuclear waste remediation

- Tc and Re often form analogues composition compounds
 - Group (VII) transition metal (Mn, Tc, Re)
- Precipitation of [⁹⁹TcO₄]⁻ anions
 - Studied with organic and inorganic cations
- This study: 1H-benzotriazole (BTA)
 - Neutral compound
 - Extensively studied for its anticorrosion properties



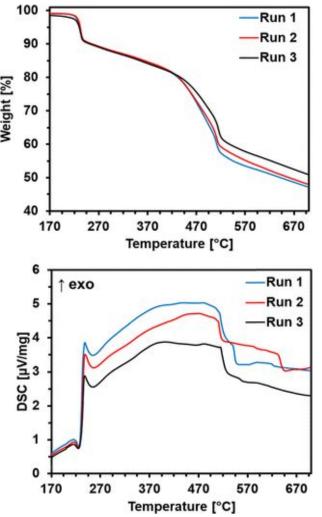


Structural analysis



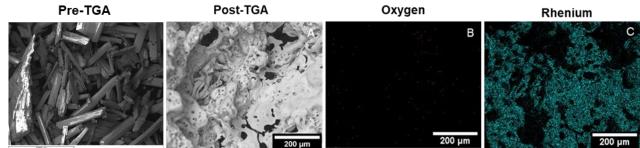
- Structure description: [C₆H₆N₃][ReO₄]
- Monoclinic space group P2,/c
- Distorted tetrahedral (T_D) [ReO₄]⁻ anion
 - Short Re-O_{1&2} bond: 1.725(3) Å & 1.730(2) Å
 - Long Re-O_{3&4} bond: 1.740(2) Å & 1.739(2) Å

- Hydrogen bond interactions
 - [C₆H₆N₃]⁺ cation and [ReO₄]⁻ anion
 - C6-H6-O2 and N1-H1-O3
 - Neighboring [ReO₄]⁻ anion
 - Re-O1^{...}Re-O1 contacts: 3.188 Å



- UV-Vis measurements: DFT
 - Absorption maxima are solvent dependent
 - Based on BTA / [ReO₄]⁻ species in solution and pKa
 - Neutral BTA, protonated and deprotonated species

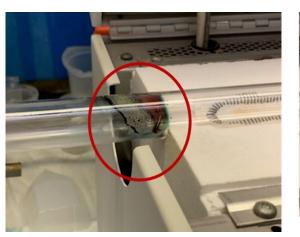
Wavelength (nm)

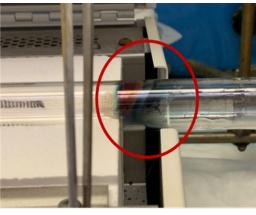


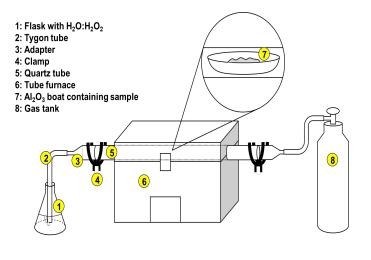
Thermal analysis: TGA UNIV

- Thermal analysis: TGA/DSC
 - Studied under argon at 10 K/min
 - Temp: 20 to 700 °C
 - Two stage decompositions

Step 1: Reduction of $[ReO_4]$ to ReO_2 Step 2: $ReO_{2(s)} + 2 CO \rightarrow Re_{(s)} + 2 CO_{2(g)}$ $ReO_{2(s)} + 2 H_{2(g)} \rightarrow Re_{(s)} + 2 H_2O_{(g)}$

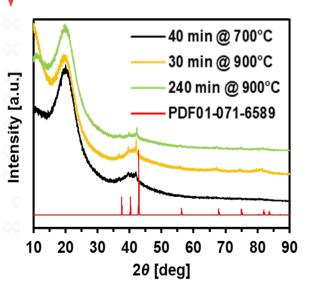

Thermal studies




Re Metal	Composite	Temp [°C]	Time [min]	Atmosphere	Note
	C6H6N3[ReO4]	700	40	O2	-
1	C ₆ H ₆ N ₃ [ReO ₄]	700	40	Ar	Crystalline
1a	C6H6N3[ReO4]	900	30	Ar	Crystalline
1b	C6H6N3[ReO4]	900	240	Ar	Crystalline
2	C6H5N3:Re2O7	350	30	Ar	Amorphous
2a	C6H5N3:Re2O7	900	120	Ar	Crystalline
3	C6H5N3:NH4ReO4	500	40	Ar	ReO ₂
3a	C6H5N3:NH4ReO4	700	60	Ar	Crystalline
4	C6H6N3[ReO4]	350	30	N ₂	Amorphous
4a	C6H6N3[ReO4]	700	60	N ₂	Crystalline
5	C ₆ H ₆ N ₃ [ReO ₄]	700	60	H_2	Crystalline

• Tube furnace

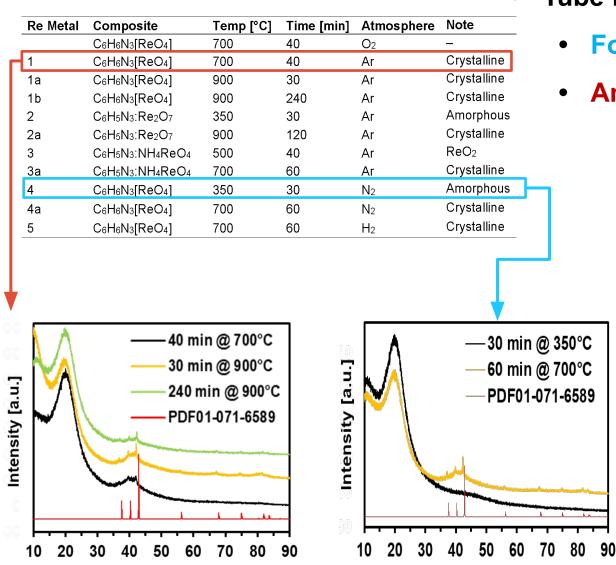
- Volatilization in O₂ atm
- Formation of Re oxides



Re Metal	Composite	Temp [°C]	Time [min]	Atmosphere	Note
	C6H6N3[ReO4]	700	40	O2	_
1	C6H6N3[ReO4]	700	40	Ar	Crystalline
1a	C6H6N3[ReO4]	900	30	Ar	Crystalline
1b	C6H6N3[ReO4]	900	240	Ar	Crystalline
2	C6H5N3:Re2O7	350	30	Ar	Amorphous
2a	C6H5N3:Re2O7	900	120	Ar	Crystalline
3	C6H5N3:NH4ReO4	500	40	Ar	ReO ₂
3a	C6H5N3:NH4ReO4	700	60	Ar	Crystalline
4	C6H6N3[ReO4]	350	30	N ₂	Amorphous
4a	C ₆ H ₆ N ₃ [ReO ₄]	700	60	N ₂	Crystalline
5	C ₆ H ₆ N ₃ [ReO ₄]	700	60	H_2	Crystalline

Tube furnace

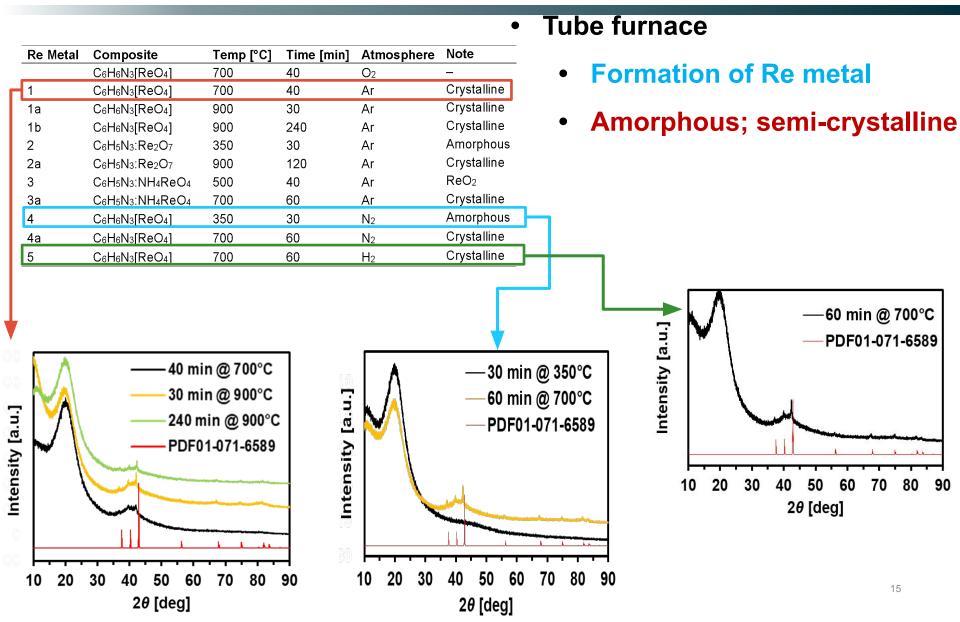
- Formation of Re metal
- Amorphous; semi-crystalline



2θ [deg]

Thermal studies

2θ [deg]


• Tube furnace

- Formation of Re metal
- Amorphous; semi-crystalline

Thermal studies

Thermal studies

Note

Crystalline

Crystalline

Crystalline

Amorphous

Crystalline

Crystalline

Amorphous

Crystalline

Crystalline

ReO₂

• NH₄[ReO₄]:C₆H₅N₃

Temp [°C]

700

700

900

900

350

900

500

700

350

700

700

Time [min]

40

40

30

240

30

120

40

60

30

60

60

Atmosphere

O2

Ar

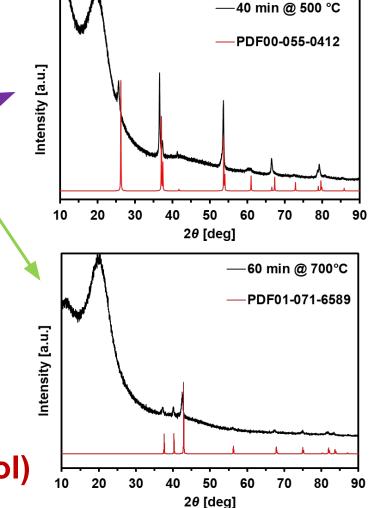
Ar

Ar

Ar

Ar

Ar


Ar

 N_2

 N_2

 H_2

- Formation of ReO₂ (1:1 mol)
- Formation of Re metal (1:5 mol)

Composite

C6H6N3[ReO4]

 $C_6H_6N_3[ReO_4]$

 $C_6H_6N_3[ReO_4]$

C6H6N3[ReO4]

C6H5N3:Re2O7

C6H5N3:Re2O7

C₆H₆N₃[ReO₄]

 $C_6H_6N_3[ReO_4]$

 $C_6H_6N_3[ReO_4]$

C6H5N3:NH4ReO4

C₆H₅N₃:NH₄ReO₄

Re Metal

1

1a

1b

2

2a

3a

4

4a

5

3

17

- Expand the use of benzotriazole (anticorrosive)
 - Precipitate and immobilize [MO₄]⁻ (M = 99Tc, Re) ions
 - Potential application for nuclear waste
 - Recall: ~1310 ± 220 Kg of 99Tc in Hanford tanks
 - Effort to convert HBTA[MO₄] to metallic species
 - Various atmospheres: 350-900 °C
 - Provide the first use of BTA as reducing agent for metal production

Future work:

- Report the study on ⁹⁹Tc
 - COVID-19 slows the progress
- Study the chemistry of BTA in simulated tanks environment

- **NSSC-LANL** interactions
 - Nuclear safeguards summer school Summer 17
 - Keepin nonproliferation program summer 17
 - G.T. Seaborg Summer Fellowship summer 18-19
- **NSSC-GWU** interactions
 - **Nuclear Security and Policy Boot Camp summer 2019**

innovations in Nuclear Technology R&D

An Awards Program of the U.S. Department of Energy, Office of Nuclear Energy, Office of Nuclear Fuel Cycle and Supply Chain

2020 Innovations in Nuclear Technology R&D Award Winners

The U.S. Department of Energy, Office of Nuclear Energy, Office of Nuclear Fuel Cycle and Supply Chain, congratulates the following winners of the 2020 Innovations in Nuclear Technology R&D Awards.

Winners of the Open Competition

Material Recovery and Waste Form Development

2020 Award Winners 2019 Award Winners 2018 Award Winners 2017 Award Winners 2016 Award Winners 015 Award Winners 2014 Award Winners First Place James Louis-Jean

2013 Award Winners 2012 Award Winners 2011 Award Winners University of Nevada at Las Vegas 2010 Award Winners Photos Preparation and Characterization of Benzotriazolium Perrhenate

Julia Knapp Northwestern University Single Crystal Structure and Photocatalytic Behavior of Grafted Uranyl on the Zr-Node of a Pyrene-Based Metal-organic Framework

- **DOE Innovations in Nuclear Technology R&D** Awards - 2020
 - 1st place in Material Recovery %

Waste Form Development

FAQ

Home

About the Awards

Who is Eligible

Application and **Review Process**

Projected Timeline

Rules for Award

Winners

Acknowledgements

UNIN

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number **DE-NA0003996**.

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.