

Nuclear Science & Security Consortium

• Neural networks only need to be trained once, and can then unfold detector responses instantly with potentially better accuracy

Performance of Simulated Detector Responses in Training **Neural Networks for Neutron Spectrum Unfolding**

James McGreivy^{1,2}, Juan Manfredi³, Daniel Siefman²

¹University of California Berkeley, Department of Nuclear Engineering, Berkeley, CA ²Nuclear Criticality Safety Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550 ³Department of Engineering Physics, Air Force Institute of Technology, WPAFB OH, 45433

Simulation of Detector Response Functions

• Geant4 is used to simulate a 5 cm x 5 cm cylinder of EJ-309 organic scintillator. The cylinder is exposed to monoenergetic neutrons, and the energy deposition of the recoiling protons and carbon ions is tracked.

• Experimentally determined light yield data is used to calculate the expected light yield given the energy deposition [3]:

• A normally distributed variable is added to the light yield, to account for statistical variability in light production and photo-electron conversion [2]:

 $\sigma_{L}(L) = 2.335L\sqrt{\alpha^{2} + \beta^{2}/L + +\gamma^{2}/L^{2}}$

• The resulting light yield for a mono-energetic neutron source gives the detector response function for that energy. 400 monoenergetic detector responses are simulated, with energies spaced evenly between 1 and 20,000 koV

 2000 ke\ — 4000 keV — 3000 keV

Light Yield (relative to 477 keV e-

• To simulate the detector response of a neutron source with an arbitrary neutron energy spectrum, a weighted sum of the 400 monoenergetic responses is performed. ϕ_{r} is the Eth detector response and R_{r} is the relative proportion of that energy within the neutron energy spectra:

$$D_i = \sum_{E=1}^{400} \phi_E R_E$$

This material is based upon work supported in part by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003996.

LLNL-POST-833828

Design of the Neural Network

• The input layer has one neuron per bin in the detector response function, and the output layer has one neuron per bin in the energy spectrum.

- Three hidden layers, with Leaky ReLu used as the activation function.
- Neurons per layer and Leaky ReLU activation value determined through Bayesian hyper-parameter optimization.

Data Engineering Using IAEA Data

• To determine how to optimally generate simulated detector response data, an IAEA technical report was used containing known neutron energy spectra, the corresponding Bonner sphere response functions, and a fully solved Bonner sphere response matrix [4]. • From this we developed an algorithm which randomly placed Gaussian-shaped peaks to generate realistic neutron energy spectra. Bayesian hyper-parameter optimization was used to determine optimal parameters for the algorithm, such as the mean and deviation in the width, height, and number of peaks to place.

Performance of Neural Network on Simulated **Detector Response Functions**

• The neural network is able to unfold simulation data with an average NRMSE of 3.3%, which is accurate enough to capture the important qualitative features of the neutron energy spectra.

• This is primarily a sanity check – there is sufficient information contained in a detector response for the neural network to unfold the energy spectra. The primary sources of error should instead be due to disagreement between simulations and measurements.

Protection Purposes: Supplement to Technical Reports Series No. 318. IAEA, 2001

[5] Pulse-Shape Analysis & Pulse-Shape Discrimination – Detection for **Nuclear Nonproliferation Group.**

https://dnng.engin.umich.edu/research/research-projects/pulse-shape-a nalysis-pulse-shape-discrimination/

National Nuclear Security Administration