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Performance of Simulated Detector Responses in Training 
Neural Networks for Neutron Spectrum Unfolding

Goal: to train a neural network on simulated scintillator 
detector responses to unfold neutron energy spectra.
● Neutron energy spectra are used to detect radioactive 

materials for national security purposes, have 
medical applications in radiation dosimetry, and are 
crucial to monitoring nuclear reaction rates.

● Traditional algorithms for neutron spectrum 
unfolding, such as iteratively solving the Fredholm 
integral equation, are extremely computationally 
expensive.

● Neural networks only need to be trained once, and 
can then unfold detector responses instantly with 
potentially better accuracy

Motivation

Background

● Geant4 is used to simulate a 5 cm x 5 cm cylinder of 
EJ-309 organic scintillator. The cylinder is exposed to 
monoenergetic neutrons, and the energy deposition 
of the recoiling protons and carbon ions is tracked.

● Experimentally determined light yield data is used to 
calculate the expected light yield given the energy 
deposition [3]:

● A normally distributed variable is added to the light 
yield, to account for statistical variability in light 
production and photo-electron conversion [2]:

● The resulting light yield for a mono-energetic neutron 
source gives the detector response function for that 
energy. 400 monoenergetic detector responses are 
simulated, with energies spaced evenly between 1 
and 20,000 keV.

● To simulate the detector response of a neutron 
source with an arbitrary neutron energy spectrum, a 
weighted sum of the 400 monoenergetic responses is 
performed. ϕE is the Eth detector response and RE is 
the relative proportion of that energy within the 
neutron energy spectra:

Simulation of Detector Response Functions
● The input layer has one neuron per bin in the detector 

response function, and the output layer has one 
neuron per bin in the energy spectrum.

● Three hidden layers, with Leaky ReLu used as the 
activation function.

● Neurons per layer and Leaky ReLU activation value 
determined through Bayesian hyper-parameter 
optimization.

Design of the Neural Network

● The neural network is able to unfold simulation data 
with an average NRMSE of 3.3%, which is accurate 
enough to capture the important qualitative features 
of the neutron energy spectra.

● This is primarily a sanity check – there is sufficient 
information contained in a detector response for the 
neural network to unfold the energy spectra. The 
primary sources of error should instead be due to 
disagreement between simulations and 
measurements. 

Performance of Neural Network on Real World 
Data

● Real-world Am-Be and Cf-252 detector responses 
were used to evaluate the accuracy of the simulated 
detector response function and the performance of 
the neural network [1].

● The geometry of the detector used by Bai et al. 
deviates significantly from the geometry of our 
simulated detector.

 

● The unfolded Am-Be 241 spectrum has an NRMSE of 
43.8% and the unfolded Cf 252 spectrum has an 
NRMSE of 24.9%

● There are many unknowns about the experimental 
setup of these real-world response functions, so we 
are unsure if these discrepancies are due to 
simulation error. 

● We will soon take our own detector response 
measurements to narrow down possible sources of 
error.
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● Neutron energy spectra can be used as a fingerprint 
to identify radioactive sources.

● Organic scintillator detectors are commonly used to 
detect fast neutrons.

● When radiation interacts with an organic scintillator 
molecule:
○ Gamma radiation Compton scatters off of electrons.
○ Neutrons elastically scatter off of hydrogen 

(protons) and carbon ions.
● The carbon ring structures found in organic 

scintillators have delocalized electrons, which are 
excited by these recoiling particles to emit light.

● This light enters a photomultiplier tube, creating an 
electric pulse. These pulses are binned based on 
signal intensity, becoming the detector response 
function

● Different physical mechanisms cause distinct pulse 
shapes for light generated by scattering electrons vs 
scattering protons or carbon ions, as shown in the 
figure below [5]. Pulse shape discrimination can be 
used to filter for neutron radiation.
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Data Engineering Using IAEA Data
● To determine how to optimally generate simulated 

detector response data, an IAEA technical report was 
used containing known neutron energy spectra, the 
corresponding Bonner sphere response functions, 
and a fully solved Bonner sphere response matrix [4].

● From this we developed an algorithm which randomly 
placed Gaussian-shaped peaks to generate realistic 
neutron energy spectra. Bayesian hyper-parameter 
optimization was used to determine optimal 
parameters for the algorithm, such as the mean and 
deviation in the width, height, and number of peaks to 
place.
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