

¹University of California, Berkeley, ²Ben-Guriyon University, Israel

Novel Helium Ion Beam Degrader for the 88-Inch Cyclotron Sarah Stevenson¹, Adi Ben-Artzy², Hanchen Wang¹, Andrew Dong¹, Lee Bernstein¹, & Peter Hosemann¹

Nuclear Science & Security Consortium

Introduction

- Helium generation can cause significant degradation of nuclear structural materials
- Ion beam implantations are widely performed to understand Helium effects in materials
- The volume of material that can be investigated is limited by ion beam energy and current
- Mechanical properties exhibit a strong size effect if samples are not sufficiently large¹
- Deep ion implantation is needed to bridge experimental length scale gaps

Impact: Understanding Helium effects on nuclear structural materials is necessary to ensure the safety and functionality of current and future technologies. Coupling the Cyclotron with an ion beam degrader enables rapid turnaround testing of bulk-scale nuclear materials.

Objectives: Uniformly implant micro-mesoscale (100 µm) materials (HT-9) with Helium ions:

- Implant the samples using 206 discrete energy levels
- Use energy levels to implant at least 0.5 at% He in the sample volume
- Prevent heating of steel samples over 300 °C
- Implant multiple samples in a single beam run

¹P. Hosemann, C. Shin, D. Kiener; J. Mater. Res., 30 (2015), pp. 1231-1245

- **Preliminary Cyclotron Experiment**
- 4 HT-9 samples were irradiated with 33 MeV deuterons then tensile tested at UC Berkeley
- This work established the beam stop design and radioactive samples tensile testing protocols

Degrader Design Constraints & Decisions

Design Criteria:

- Compact; fit in 21.5 cm x 28 cm x 28 cm beam box
- Implant 5 samples at once; 20 x 5 mm² beam spot
- Provide water cooling for in-beam components
- Produce >206 discrete energy levels

Other degrader designs: too large, don't provide enough levels, difficult to cool

Modulator wheel example²

Max wheel diameter to fit in beam box: 13 cm

²Constanzo, J., Vanstalle, M., Finck, C., Brasse, D. & Rousseau, Med. Phys. 46, 2356–2362 (2019).

Our degrader design solution: compact, >206 discrete energy levels, efficient cooling

Binary step-wedge degrader

Binary step-wedge degrader meets size constraints

Binary step wedge degrader provides >206 levels of degradation

Arranging 4 filter thicknesses to create degrader "wedges"

This material is based upon work supported in part by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003996.

1x 1.6 m diameter wheel for 206 levels

16x 13 cm wheels for 206 levels

15 x 11 x 13 cm³

Interchangeable degrader filters

-emperature monitoring

Water cooling channel and connections

- Fits in an average Cyclotron beam box, ~1ft³

University of California, Berkeley

Collimator sub-assembly detail

Motors cooling Temperature monitoring iacket

Each wedge has individual driving motor+pinion, and zero microswitch

Beam stop sub-assembly detail

5 samples in beam

Sample thermocouples ~ Water thermocouples Water cooling connections

Conclusions

• A novel ion beam degrader has been designed for uniform Helium implantation – Allows for the study of bulk Helium effects of a variety of materials and sample sizes

- Water cooled to prevent annealing of samples and in-beam components Instrumented to monitor sample and in-beam component temperature

National Nuclear Security Administration