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Introduction

David Raji
Department of Nuclear Engineering
University of Tennessee, Knoxville
Advised by Jason Hayward

NSSC Research Focus Areas: Radiation Detection, 
Computing and Optimization in Nuclear Applications
Planned Graduation Date: Spring 2024

Lab Mentor and Partner Laboratory: Ren Cooper, LBNL

Mission Relevance of Research: This research focuses on 
development of a new system that may be deployed for long 
periods of time to continuously monitor radioactive 
contamination of a wide area. Network-wide methods are 
then used to synthesize individual node data to model the 
whole spatial field, which may be of interest in accident 
scenarios as well as for emergency response. Additionally, 
such a system would drastically improve the capability to 
collect real-world ground truth data from explosive dispersals 
of contaminants in testing scenarios.
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Background

- Radioactive dispersal incidents 
present uniquely challenging 
scenarios for practical 
management
○ Possibility of threats to public 

health
○ Comprehensive spatial 

measurement usually impossible
○ State-of-the-art systems not 

equipped for long-term in-situ 
measurements

Fig 1: Aerial radioactivity measurements, 
Fukushima reactor area

image courtesy of US DOE
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High-Level Conceptualization

- Motivating objective: address gap in long-term/continuous 
wide area monitoring with deployable network of sensor 
modules
○ Mesh network of radiation measurement nodes capable of 

intercommunication
○ Data transmission to central edge-processing fusion center
○ Power management by design; offloading processing allowing 

sensors to remain in field for extended periods of time
○ System capable of real-world data collection on plumes and 

deposition profiles in a manner that would cleanly preserve time-
domain data

- Thus far, this work has centered upon the modeling and 
simulation of such a networked sensor array in software
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Framework Diagram

Network Model:
- Node density determination
- Node placement in terrain
- Intensity measurement

Dispersed 
radioactivity datasets

Fig. 2: Diagram of sensor network modeling framework operation.

Atmospheric 
simulations (GRASP)

Network algorithms:
- Spatial reconstruction
- Path-finding
- Time-domain 

measurement

Metaheurstic 
optimization:
Finding best model 
parameterizations 
for network 
algorithmsStatistical 

evaluation & 
analysis

Source intensity propagation for 
conversion of concentration 
depositions to intensity maps
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Realism in Datasets from Simulation

- We employ GRASP (GPU Resident 
Atmospheric Simulation Program) for 
simulation of atmospheric dispersion 
of contaminants

- Parameterizations of terrain and 
wind tuned to real-life geographic 
areas of interest to approximate 
plume deposition to generate 
realistic source scenarios

Fig. 3 (above): Top-down view (summed 
over Z) of sample tracer emission in Idaho 
Falls terrain.

Fig. 4 (left): Simulated deposition sample in 
Idaho Falls terrain.
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Network Design Parameters

- Network node density: How many nodes should be placed 
in a geographical area of given size? What pattern should 
the placement follow to maximize their sensitivity?

- Reconstruction algorithm: What algorithm should be used 
to reconstruct the intensity map from sparse node 
measurements?

- Terrain complexity: What is the effect of occluding terrain 
on the performance of such a network, whether directly or 
indirectly?

- Temporal behavior: How should node sensitivities to 
changes in source term be altered over time? Can we add 
nodes to the network once deployed? How should 
malfunctions in nodes be handled?
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Network Node Placement

- Reconstruction will improve 
with greater node density

- However,
○ Nodes may be expensive, 

practically or otherwise
○ More nodes will increase 

the power burden on the 
fusion center

- Therefore, for a number N
nodes, we should aim to 
place them in such a way as 
to gain maximum information 
for the highly 
underdetermined problem of 
distribution reconstruction Fig. 5: Example placement of 25 nodes in section of 

Oak Ridge terrain using Lloyd’s algorithm for 
Voronoi centroids, weighted by sensitivity gradients
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Spatial Intensity Reconstruction

- Bicubic interpolation 
and Gaussian 
process regression 
primary methods

- We also explore 
reconstruction via 
integration of image-
to-image translation 
models as transfer 
functions

(a) (b) (c)

Fig. 6 (above): Ground truth intensity sample (a); sparse input (b), 
reconstruction with p2pGAN (c); 

Fig. 7 (below): sample of deposition intensity (a) with network measurement 
(b) and interpolated (c) and GPR (d) reconstruction;

(a) (b) (c) (d)



13

Path Planning

- Composite cost-
function of path 
complexity and dose 
received utilized in 
preliminary work to 
find route through field

- Improving 
reconstructions 
consequently affects 
the results of path-
finding algorithms 
used

Fig. 8: Sample pathing comparison using composite MO A* algorithm; target 
(ground truth), interpolated, and p2pGAN-generated spatial intensity maps used in 
Idaho Falls terrain using 25 nodes;
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Multi-Objective Optimization

- Many of our problems 
balance conflicting 
objectives:
○ Fitness of reconstruction

versus node density
○ Path length versus dose 

received
○ Measurement frequency

versus accuracy of time-
varying signal

- Difficulty in attempting to 
land on conclusive results 
due to inherent trade-offs 
in the problems and large 
parameter space

Fig. 9: Shallow node density parameter 
exploration for reconstruction fitness across 

node placement methods.
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Optimizing the Time-Domain Measurement 
Problem

- Background: transmitting a new measurement to the edge for 
processing requires the node to expend power
○ Applying detection of concept drift as basis to determine 

appropriate update intervals
○ Yet, determining how a drift detection algorithm should be 

parameterized to handle this data and minimize both objectives 
is not obvious

Fig. 10: Example of 
tradeoff in time-domain 
between measurement 
error and measurement 
frequency with drift 
detection algorithm 
applied; data signal 
from single node 
located in Idaho Falls 
terrain.
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Optimizing the Time-Domain Measurement 
Problem

- Multi-objective evolutionary algorithm applied to time-domain 
measurement problem

Fig. 11: Left: Development of Pareto frontier in archive (red) over population generations (blue). 
Right: KDE plot over generations of population density in objective space.
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Optimizing the Time-Domain Measurement 
Problem

- Expanding on multi-objective optimization for diverse problems
○ Explaining objective space distribution in terms of algorithm parameters 

(see Fig. 12)
○ Building towards more complete problem characterizations by including 

additional parameters and constraints

Fig. 12: Population individuals evolutionary algorithm results, 
colored by anomaly n-sigma parameter value of solution.

- Improving realism 
in source terms 
and using them to 
build larger and 
more robust 
datasets

- Identifying other 
network algorithms 
to implement and 
evaluate



19

Approach to Multi-Objective Pathfinding

Fig. 13: Heuristic calculation for elevation change objective; the space is 
“flooded” by progressively raising the allowable gradient until a path is possible 

between source and destination.

- Formulating an MO 
pathfinding 
algorithm demands 
a method to 
equitably balance 
measures of fitness 
for each objective

- However, heuristics 
of best-case 
performance are 
not always obvious
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Approach to Multi-Objective Pathfinding (cont’d)

Fig. 14: Heuristic maps for distance, elevation gradient, & dose received; destination 
point marked as green X.

- Whereas distance is usually the only objective, elevation change 
and dose received must be considered here; therefore, heuristic 
maps are calculated using novel methods
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Pareto A* Demonstration

Fig. 15: Sample results of Pareto A* algorithm, weighted to equally 
balance distance, elevation gradient and intensity received.
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MOEA on Pareto A*: Sample Results

Fig. 16: Development of Pareto frontier approximation in archive (red) 
over generations of population (blue) in two dimensions of the problem’s 
three-dimensional objective space.
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MOEA on Pareto A*: Candidate Solutions

Fig. 17: Sample pathing 
solution candidates of 
the final archive of a run 
of the MOEA.
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Multi-Objective Node Placement

- Objectives considered in node placement are quantity of nodes 
placed, reconstruction similarity, min. internode distance, and 
overall sensitivity

Fig. 18: Pareto frontier approximation in archive (red) over generations of population 
(blue) in two dimensions of the problem’s four-dimensional objective space.
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Node Placement - Pareto Front Approx. Coloring

- Visualizing the population in objective space allows for 
explainability via coloring by parameters

Fig. 19: Coloring of individuals in population by placement method parameter in 2D 
slice of objective space for objectives of minimum internode distance and sensitivity.



The NSSC Experience

- I have had the privilege to be participate in summer programs, including:
○ George Washington University’s 2021 Nuclear Security Policy Boot Camp
○ The 2022 NSSC-LANL Keeping Nonproliferation Science Summer Program

- Support and funding from NSSC has also allowed me to present at conferences:
○ IEEE NSS/MIC 2021: “A Modeling Framework for Distributed 

Radioactivity Sensor Networks” (oral presentation)
○ UPR 2021: “Approaches to Wide Area Sensor Networks for Distributed 

Radioactivity Mapping” (poster)
○ SORMA West 2021: “Approaches to Wide Area Sensor Networks for 

Distributed Radioactivity” (poster)

- The NSSC has allowed me to further grow my network of connections at national 
labs with the contacts I have made at LANL via initiating the Keepin program

- Overall, what I value most about the NSSC is that is has provided me the 
intellectual freedom to explore some of the research topics that interest me most
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Thank you! Questions?
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