

Towards rigorous uncertainty quantification in nuclear data evaluation

Noah Walton University of Tennessee Oak Ridge National Laboratory, Los Alamos National Laboratory

> NSSC Fall Workshop and Advisory Board Review October 17-18, 2023

Introduction

Department and University: University of Tennessee
Department of Nuclear Engineering
Academic Advisor: Vladimir Sobes
NSSC Research Focus Area(s): Nuclear Data
Academic Standing: Plan to graduate with PhD 12/2024

Lab Mentor and Partner National Laboratory:

- Jesse Brown, Oak Ridge National Laboratory
- Denise Neudecker, Los Alamos National Laboratory
- Mike Grosskopf, Los Alamos National Laboratory

Mission Relevance of Research:

- Nuclear data underpins modelling & simulation (M&S)
- M&S plays a vital role in the nuclear security mission
- This research broadly improves accuracy and UQ on key nuclear data
- Specific demonstration focuses on Ta-181, a pertinent isotope for mission-critical operations and a focus of the nuclear data group at Los Alamos National Laboratory

Resonance parameters describe reaction cross sections

These parameters are an important piece of nuclear data

Resonance parameters are not known from first principles

5

The values are estimated through measurement & theory

Evaluators infer a theoretical model from experimental data

The big picture

- Nuclear data evaluation is a manual, laborious process
- Lacking reliability & reproducibility
- RRR evaluation method is known to underpredict uncertainty Solution has been to conservatively inflate uncertainties

Application

- Improved knowledge and reduction in uncertainty on cross section data propagates to a broad range of NNSA applications
- Mission-critical operations at Los Alamos National Lab (LANL) are highly sensitive to Ta-181
- Demonstration on Ta-181 cross section directly supports the NNSA mission at LANL

Challenges for nuclear data evaluators

The big picture

- Nuclear data evaluation is a manual, laborious process
- Lacking reliability & reproducibility
- RRR evaluation method is known to underpredict uncertainty Solution has been to conservatively inflate uncertainties

Application

- Improved knowledge and reduction in uncertainty on cross section data propagates to a broad range of NNSA applications
- Mission-critical operations at Los Alamos National Lab (LANL) are highly sensitive to Ta-181
- Demonstration on Ta-181 cross section directly supports the NNSA mission at LANL

How can we improve this process?

Reproducibility and **manual effort** can be improved by automating a systematic, computational approach to inferential regression

How can we improve the result?

Reproducibility and **manual effort** can be improved by automating a systematic, computational approach to inferential regression

Without access to the solution (labelled data) an assessment of **accuracy** and **precision** is impossible

How can we improve the result?

Reproducibility and **manual effort** can be improved by automating a systematic, computational approach to inferential regression

Without access to the solution (labelled data) an assessment of **accuracy** and **precision** is impossible

High-utility synthetic data enables **learning**/improvement and **benchmarking**

Experimental design isolates phenomena driven by the cross-section

Experimental design isolates phenomena driven by the cross-section

Experimental data is evaluated giving estimate & uncertainty

Generative model for resonance parameters

Generative model for experimental measurement data

Hide solution, produce evaluated estimates & uncertainty

18

Compare evaluation to solution, learn, & repeat

Improve automated evaluation algorithm & benchmark results

20

ATARI – AI/ML Tool for Automated **Resonance Identification**

- Lower-fidelity demonstration of automated regression
- Synthetic, labelled data allows: ullet
 - Learning hyperparameters
 - Algorithmic training
 - Quantitative benchmarking
- Next steps: •
 - Bring automated methodology to full fidelity
 - Extrapolate learned algorithm to real data
- Impact: •
 - **Reproducible evaluations** ٠
 - **Rigorously benchmarked uncertainty** ٠
 - **Propagates to many NNSA applications** •

Walton, N.A.W., Armstrong, J.L., Sobes, V., Automated resonance evaluation tool; nonconvex decomposition method for resonance regression and uncertainty quantification. Proceedings of the 2022 International conference on Nuclear Data, (2022). 21

The NSSC Experience

OAK

National Laboratory

Brown

- Invaluable relationship with laboratory mentors
- 2023 Keepin program at LANL
 - Experience working on different nuclear data
 - Valuable methods to bring to • this research
- 2022 NSSC nuclear data summer school
- Conferences
 - 2022 International Conference on Nuclear Data for Science and Technology 2022 Cross Section Evaluation
 - ۲ Working Group
 - 2023 Workshop for Applied ٠ Nuclear Data

Neudecker

Acknowledgements

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number **DE-NA0003996.**

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.