Novel Uranium-Small Molecule Interactions, and X-ray Spectromicroscopy for Nuclear Forensics

I. Joseph Brackbill,1,2 Laurent Maron,3 Robert G. Bergman,1,2 John Arnold,1,2 Alex Ditter,2 Rachel Lim,4 Alex Baker,4 Brandon Chung,4 and David Shuh2

1 University of California, Berkeley 2 Lawrence Berkeley National Laboratory 3 University of Toulouse 4 Lawrence Livermore National Laboratory

Introduction

Dihydrogen complexes are mainstays of transition metal chemistry
• Homogeneous hydrogenations
• Biocatalytic chemistry
• Hydrogen storage

Since discovery in 1984, dihydrogen complexes have been implicated in main group as well as lanthanide chemistry

No counterpart in the actinides

Experimental Results

\(^1\)H nuclear magnetic resonance (\(^1\)H NMR) spectroscopy very sensitive to paramagnetic ion interactions:

\[
\Delta \lambda = \Delta \omega / \omega_0 = \Delta \omega_{\text{FS}} + \Delta \omega_{\text{CS}} + \Delta \omega_{\text{PCS}}.
\]

Titration experiment shows linear dependence of \(\Delta \omega_{\text{CS}}\) chemical shift on \([\text{Cp}_2\text{H}_{\text{SiMe}}_3\text{U}]\):

\[
\begin{align*}
\text{Fig. 3.} \quad \text{\(^1\)H NMR spectra (500 MHz, 296 K) of a ~3 mM solution of \(\text{H}_2\) in \(\text{C}_6\text{D}_6\) containing the indicated equivalents of \([\text{Cp}_2\text{H}_{\text{SiMe}}_3\text{U}]\). Concentrations calibrated to internal hexamethylbenzene.}
\end{align*}
\]

Temperature dependence deviates from Curie-Weiss behavior:

\[
\text{Fig. 4.} \quad \text{Plot of chemical shift vs. 1000/T for a methylcyclo-hexane-d14 solution of \(\text{H}_2\) \([\text{Cp}_2\text{H}_{\text{SiMe}}_3\text{U}]\) and hexamethylbenzene.}
\]

Theoretical Modeling

Density functional theory calculations:
• Geometry similar to \(\text{Cp}^*_3\text{Eu-H}_2\), but very close U-H contacts
• U-H\(_2\) bonding orbital shows 1-electron involvement

\[
\begin{align*}
\text{Fig. 5.} \quad \text{Optimized structure of complex 1.}
\end{align*}
\]

\[
\begin{align*}
\text{Fig. 6.} \quad \text{U-H\(_2\) bonding orbital in complex 1.}
\end{align*}
\]

Mission Relevance

The NNSA’s understanding of actinide chemistry informs its development of technologies capable of characterizing and analyzing nuclear materials. As such, continuing to study new actinide-based materials is critical to maintaining a current and effective detection and analysis protocol. This research expands the community’s knowledge base in fundamental actinide-element interactions, relevant to the structure and properties of materials such as actinide carbides, silicides, and post-transition-metal alloys.

The detection of trace elements in taggart samples greatly facilitates material accounting. Furthermore, the application of synchrotron X-ray techniques to actinide material analysis can yield information as to material origin and refinement method(s) for nuclear forensics purposes.

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE) National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award No. DE-NA00O3996. This work was funded in part by the Office of Defense Nuclear Nonproliferation Research and Development within the DOE National Nuclear Security Administration (NNSA). This research used resources of the Advanced Light Source, a U.S. DOE Office of Science User Facility operated for the U.S. DOE under Contract No. DE-AC02-05CH11231 at LBNL. This work was supported in part by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences Heavy Element Chemistry Program of the DOE at LBNL under Contract DE-AC02-05CH11231.

References

Design and Synthesis

Target: electron-rich uranium complex with vacant coordination site

Start synthesis from uranium turnings:

\[
\begin{align*}
\text{U}^2 + 3/2 \text{I}_2 + \text{EtO} \text{sonication, 7 d} \rightarrow \text{U}^3
\end{align*}
\]

Separately, synthesize bulky, multihaptic “Cp” ligand:

\[
\begin{align*}
\text{Na}^+ \text{SiMe}_3 + \text{EtO} \text{sonication, 7 d} \rightarrow \text{K}^+ \text{SiMe}_3
\end{align*}
\]

Combine ligand and U(l) to yield uranium(III) complex with open coordination site:

\[
\begin{align*}
\text{U}^3 + 3 \text{(CpSiMe)K} \text{reflux, 1 d} \rightarrow \text{Me}_2\text{Si}
\end{align*}
\]

Acknowledgments

This material is based upon work supported in part by the Department of Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Award Number DE-NA0003996.