TN
y N

|. Joseph Brackbill,*% Laurent Maron,? Robert G. Bergman,** John Arnold,*? Alex Ditter,> Rachel Lim,* Alex

Nuclear Science & Security
Consortium

Introduction

Dihydrogen complexes are mainstays of transition metal
chemistry

« Homogeneous hydrogenations

* Blomimetic chemistry

« Hydrogen storage

Since discovery in 1984, dihydrogen complexes have been
Implicated in main group as well as lanthanide chemistry
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No counterpart in the actinides
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Fig 2. Structure o

Fig 1. Structure of the
“Kubas” complex.1

Design and Synthesis

Target: electron-rich uranium complex with vacant
coordination site

Start synthesis from uranium turnings:
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Separately, synthesize bulky, multihaptic “Cp” ligand:
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Combine ligand and Ul; to yield uranium(lll) complex with

open coordination site:
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Experimental Results

'H nuclear magnetic resonance (*H NMR) spectroscopy
very sensitive to paramagnetic ion interactionss:

Ay = Av/vy = Acps + Acs + Apcs.

Titration experiment shows linear dependence of H,
chemical shift on [(CcH,SIMe;);U]:
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Temperature dependence deviates from Curie-Welss
behavior:
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Similar *H NMR evidence suggests a uranium-olefin
interaction is possible with Pt(n?-C,H,)(PPh,).,:
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Density functional theory calculations:

. Geometry similar to Cp*,Eu-H,, but very close U-H
contacts

. U-H, bonding orbital shows f-electron involvement
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Fig 5. Optimized structure
of complex 1.

Fig 6. U-H, bonding orbital
In complex 1.

Theoretical Modeling

Mission Relevance

The NNSA's understanding of actinide chemistry
Informs its development of technologies capable of
characterizing and analyzing nuclear materials. As such,
continuing to study new actinide-based materials is critical
to maintaining a current and effective detection and
analysis protocol. This research expands the community’s
knowledge base in fundamental actinide-element
Interactions, relevant to the structure and properties of
materials such as actinide carbides, silicides, and post-
transition-metal alloys.

The detection of trace elements in taggant samples
greatly facilitates material accounting. Furthermore, the
application of synchrotron X-ray technigues to actinide
material analysis can yield information as to material origin
and refinement method(s) for nuclear forensics purposes.
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Internship Highlight:
Nuclear Forensics at the Advanced Light
Source via Soft and Tender X-ray
Spectromicroscopy

Background:

. Robust nuclear forensics program part of preventing
the use and proliferation of nuclear weapons

. X-ray fluorescence elucidates elemental composition
of a sample by measuring spectrum of characteristic
X-ray emissions

Metallic uranium doped with other metals to facilitate
“intentional forensics”:

Fig 7. Uranium taggant

monolith in containment

system of polypropylene
and Kapton.

Analysis at ALS BL 10.3.2 allows detection of trace (tens of

ppm) elements in the taggants and element mapping:
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Fig 8. X-ray fluorescence spectrum of the uranium

taggant monolith. Spectra are offset for clarity.
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Fig 9. X-ray fluorescence element maps.
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