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Mission Relevance of Research:

My research focuses on characterizing silicon photomultipliers (SiPMs) to enable their use
in harsh environments. This work is highly relevant to the mission of the National Nuclear
Security Administration (NNSA), which seeks to deploy radiation detectors in harsh
environments to help prevent nuclear weapon proliferation and reduce the threat of
nuclear and radiological terrorism worldwide.

Within the framework of the NSSC, | was awarded the Keepin Fellowship in Summer 2022.
This opportunity enabled me to start an internship at Sandia National Laboratory, which is
still ongoing. Part of this work is support by the UIUC-SNL LDRD project entitled
Development of High-Fidelity Radiation Detection Models with SiPM Readout.



Motivation and Objectives X LLinois
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certain radiation detection applications

« Robust models that connect the electrical
and optical performance to the radiation
detection performance of the SiPM are
urgently needed

« Our specific objective is to characterize
and reduce the dark counts in SiPMs and
develop experimentally validated models

[1] Microfj Series - Onsemi. Onesmi, SChemat|C Of

https://www.onsemi.com/pdf/datasheet/microj-series-d.pdf .
[2] “What Are Silicon Photomultipliers (Sipms)?” AZoSensors.com, 3 Feb. 2021 S' P M [2] 3
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Technical Challenges X 1LLiNoIS
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[1] P. Eckert, R. Stamen, H. C. Schultz-Coulon, Study of the response and parameters of SiPM
photon-counting resolution of silicon photomultipliers using a generic sim- response
ulation framework, Journal of Instrumentation 7 (08) (2012) PO8011. 4
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Dark Count Spectrum Analysis

I iLLINOIS

Dark counts occur in SiPMs when thermal carriers trigger an avalanche of electrons
The amplitude of each dark count signal can be recorded to create a dark count spectrum

From this spectrum, performance parameters can be extracted

Gain, crosstalk probability, avalanche noise, electronic noise
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Printed Circuit Board (PCB) Design
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Dark Count Pulses and Data Processing W ILLINOIS

Decay removal model
1 .
Vi - VOi + ;Z;:l Vo]' X (tj _ tj—l)
where tj_; =0
andVy =V —V,in

t=time in nanoseconds V= volts in millivolts 7= microcell recharge time
| represents the current sample and j represents the previous samples
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Advansid Analysis X iLLiNois
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Dark Count Spectrum X ILLINOIS

Model function

—(x — nxy — x,)°
Y0 = Az\/Zn(ae +naa) p( 2(0é +naf)
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Optical Crosstalk (OCT) Measurement Setup X iLLiNoIs

Filter testing schematic on cross-section along dashed line in
the top left image.

Vacuum chamber

4 A

Semrock Filter

Semrock Filter

N Y

11




OCT Results I ILLINOIS

No filter

OCT probability and
SYINE)

Wavelength Selection

Interference filter Semrock BrightLine Transmittance band:
FF01-520/70-25 485nm-555nm
UG5 400nm-600nm 18.56 £ 0.05
BG39 700nm-1000nm 18.04 £ 0.05
Bandpass filters

BG40 700nm-1000nm 18.44 £ 0.05
KG2 800nm-1200nm 19.04 £ 0.05
N-WG280 200nm-250nm 20.98 £ 0.04
0G590 200nm-550nm 19.10 £ 0.00
Longpass filters RG695 200nm-650nm 17.26 £ 0.12
RG850 200nm-700nm 19.70 £0.09
RG1000 200nm-700nm 19.00 £ 0.06
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Conclusions and Current Work X LLINOIS

SiPMs do not benefit from decades of R&D which have matured PMT technology; therefore,
robust and high-fidelity models are needed for their optimum deployment, especially in
harsh environments

We have characterized first-principle parameters of SiPM response through new
low-noise dark count rate experimental setup
» We have compared two technologies based solely on their micro-electronic SiPM
configuration. We found that Advansid has a lower DCR compared to the Onsemi by
a factor of 0.457
« Advansid has a lower OCT probability by a factor of 0.639

The extracted parameters will be used for first-principle simulations that generate electrical
SiPM response (GosSiP) from radiation transport simulation (GEANT4)

Finally, the characterization and control of specific parameters, such as OCT, are expected
to reduce the noise associated with the signal and improve detection metrics such as energy
and time resolution and pulse-shaped discrimination

13



' The NSSC Experience X ILLINOIS

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

RESEARCH

* Advance Radiological Laboratory
* Nuclear Policy Issues and * |EEE Presentation:
Deterrence Keepin Presentation First-principle SiPM
Characterization to
Enable Radiation
Detection in Harsh
Environments
* First Principle of SiPM
Response (paper to be
submitted)
* INMM Presentation:
"Effect of Silicon
Photomultiplier Optical
EXP ER | E N CE Crosstalk on Pulse-
shape Discrimination
« NSSC-LANL Keepin and Energy Resolution”
Fellowship Summer Program
* Internship at Sandia National N ETWO RK

Laboratory * Network with fellow
students and DOE lab
researchers




NUCLEAR SCIENCE and SECURITY CONSORTIUM

: Acknowledgements W iLLINOIS

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-
NA0003996.

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.



T ILLINOIS
Breakdown Voltage Measurement

—— Onsemi UIUC board IV curve
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The breakdown voltage was determined
bK locating the nearest data point to the
sharp increase in current

« This procedure was suggested by
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